1,213 research outputs found

    Patient dosimetry for 90Y selective internal radiation treatment based on 90Y PET imaging

    Get PDF
    published_or_final_versio

    Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications

    Get PDF
    SIGNIFICANCE Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. RECENT ADVANCES We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. CRITICAL ISSUES Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. FUTURE DIRECTIONS Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171-1185

    Association of decreased mitochondrial DNA content with ovarian cancer progression

    Get PDF
    Mitochondrial DNA (mtDNA) content in ovarian carcinomas was assessed by quantitative PCR. Results show that mtDNA content in tumour cell was significantly higher than that in normal ovary. Change in mtDNA content was not related with patients' age or tumour stages. However, the average mtDNA copy number in pathological low-grade tumours was over two-fold higher than that in high-grade carcinomas (P=0.012). Moreover, type I carcinomas also had a significantly higher mtDNA copy number than in type II carcinomas (P=0.019). Change in mtDNA content might be an important genetic event in the progression of ovarian carcinomas

    Targeting quiescent leukemic stem cells using second generation autophagy inhibitors

    Get PDF
    In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin−Sca-1+c-kit+CD48−CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    Graphene plasmonics

    Full text link
    Two rich and vibrant fields of investigation, graphene physics and plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges, from terahertz to the visible, with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version available only at publisher's web site

    A novel approach for rapid screening of mitochondrial D310 polymorphism

    Get PDF
    BACKGROUND: Mutations in the mitochondrial DNA (mtDNA) have been reported in a wide variety of human neoplasms. A polynucleotide tract extending from 303 to 315 nucleotide positions (D310) within the non-coding region of mtDNA has been identified as a mutational hotspot of primary tumors. This region consists of two polycytosine stretches interrupted by a thymidine nucleotide. The number of cytosines at the first and second stretches are 7 and 5 respectively, according to the GeneBank sequence. The first stretch exhibits a polymorphic length variation (6-C to 9-C) among individuals and has been investigated in many cancer types. Large-scale studies are needed to clarify the relationship between cytosine number and cancer development/progression. However, time and money consuming methods such as radioactivity-based gel electrophoresis and sequencing, are not appropriate for the determination of this polymorphism for large case-control studies. In this study, we conducted a rapid RFLP analysis using a restriction enzyme, BsaXI, for the single step simple determination of 7-C carriers at the first stretch in D310 region. METHODS: 25 colorectal cancer patients, 25 breast cancer patients and 41 healthy individuals were enrolled into the study. PCR amplification followed by restriction enzyme digestion of D310 region was performed for RFLP analysis. Digestion products were analysed by agarose gel electrophoresis. Sequencing was also applied to samples in order to confirm the RFLP data. RESULTS: Samples containing 7-C at first stretch of D310 region were successfully determined by the BsaXI RFLP method. Heteroplasmy and homoplasmy for 7-C content was also determined as evidenced by direct sequencing. Forty-one percent of the studied samples were found to be BsaXI positive. Furthermore, BsaXI status of colorectal cancer samples were significantly different from that of healthy individuals. CONCLUSION: In conclusion, BsaXI RFLP analysis is a simple and rapid approach for the single step determination of D310 polymorphism of mitochondrial DNA. This method allows the evaluation of a significant proportion of samples without the need for sequencing- and/or radioactivity-based techniques
    • …
    corecore