2,675 research outputs found

    Isochronicity Correction in the CR Storage Ring

    Full text link
    A challenge for nuclear physics is to measure masses of exotic nuclei up to the limits of nuclear existence which are characterized by low production cross sections and short half-lives. The large acceptance Collector Ring (CR) at FAIR tuned in the isochronous ion-optical mode offers unique possibilities for measuring short-lived and very exotic nuclides. However, in a ring designed for maximal acceptance, many factors limit the resolution. One point is a limit in time resolution inversely proportional to the transverse emittance. But most of the time aberrations can be corrected and others become small for large number of turns. We show the relations of the time correction to the corresponding transverse focusing and that the main correction for large emittance corresponds directly to the chromaticity correction for transverse focusing of the beam. With the help of Monte-Carlo simulations for the full acceptance we demonstrate how to correct the revolution times so that in principle resolutions of dm/m=1E-6 can be achieved. In these calculations the influence of magnet inhomogeneities and extended fringe fields are considered and a calibration scheme also for ions with different mass-to-charge ratio is presented.Comment: 6 figures, recised version May 201

    Factoring the Cycle Aging Cost of Batteries Participating in Electricity Markets

    Full text link
    When participating in electricity markets, owners of battery energy storage systems must bid in such a way that their revenues will at least cover their true cost of operation. Since cycle aging of battery cells represents a substantial part of this operating cost, the cost of battery degradation must be factored in these bids. However, existing models of battery degradation either do not fit market clearing software or do not reflect the actual battery aging mechanism. In this paper we model battery cycle aging using a piecewise linear cost function, an approach that provides a close approximation of the cycle aging mechanism of electrochemical batteries and can be incorporated easily into existing market dispatch programs. By defining the marginal aging cost of each battery cycle, we can assess the actual operating profitability of batteries. A case study demonstrates the effectiveness of the proposed model in maximizing the operating profit of a battery energy storage system taking part in the ISO New England energy and reserve markets

    Quantitative structural mechanobiology of platelet-driven blood clot contraction.

    Get PDF
    Blood clot contraction plays an important role in prevention of bleeding and in thrombotic disorders. Here, we unveil and quantify the structural mechanisms of clot contraction at the level of single platelets. A key elementary step of contraction is sequential extension-retraction of platelet filopodia attached to fibrin fibers. In contrast to other cell-matrix systems in which cells migrate along fibers, the "hand-over-hand" longitudinal pulling causes shortening and bending of platelet-attached fibers, resulting in formation of fiber kinks. When attached to multiple fibers, platelets densify the fibrin network by pulling on fibers transversely to their longitudinal axes. Single platelets and aggregates use actomyosin contractile machinery and integrin-mediated adhesion to remodel the extracellular matrix, inducing compaction of fibrin into bundled agglomerates tightly associated with activated platelets. The revealed platelet-driven mechanisms of blood clot contraction demonstrate an important new biological application of cell motility principles

    Dynamics of perpendicular recording heads

    Get PDF
    3D modeling and inductance measurements were used to design an ultra-high frequency perpendicular system. Kerr microscopy and spin-stand experiments with focused ion beam (FI-B) trimmed perpendicular heads and perpendicular media directly verified the high frequency concepts

    Foam-like compression behavior of fibrin networks

    Get PDF
    The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A non-linear stress-strain response of fibrin consists of three regimes: 1) an initial linear regime, in which most fibers are straight, 2) a plateau regime, in which more and more fibers buckle and collapse, and 3) a markedly non-linear regime, in which network densification occurs {{by bending of buckled fibers}} and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving "compression front" along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young's modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork

    Ground-penetrating radar stratigraphy and dynamics of megaflood gravel dunes

    Get PDF
    Ground-penetrating radar was used to elucidate the stratigraphy of late Pleistocene gravel dunes in the Altai Mountains of southern Siberia that formed when a lake emptied as a result of ice-dam failure. Survey-lines across dunes had a resolution of decimetres, with depth penetration of 20 m. The reflections identify bounding surfaces and radar facies. Two classes of unconformities are identified: (1) an erosional unconformity at the base of the dunes; (2) steeply inclined unconformities that truncate underlying inclined reflections and are downlapped by overlying inclined reflections within the dunes. Unconformities define six radar facies (RF): RF 1, basal subhorizontal discordant reflections; RF 2, poorly defined discordant reflections; RF 3, planar inclined reflections; RF 4, sigmoidal inclined reflections; RF 5, trough fills; RF 6, low-angle inclined reflections. The basal unconformity represents the flood-cut surface, across which the dunes migrated. The inclined unconformities may be interpreted in two ways: (1) erosional surfaces induced by unsteady flow within one flood, or (2) erosional surfaces developed by a series of floods reactivating dunes left stranded by previous floods. The evidence favours the latter model, which is consistent with the occurrence of several dune-forming events within the basin. The broader implications of the study are considered with respect to investigations of megaflood bedforms worldwide
    corecore