56 research outputs found

    Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level

    Get PDF
    Phosphor-converted white light-emitting diodes (LEDs) are becoming increasingly popular for general lighting. The non-rare-earth phosphorK(2)SiF(6): Mn4+, showing promising saturated red d-d-line emission, was investigated. To evaluate the application potential of this phosphor, the luminescence behavior was studied at high excitation intensities and on the microscopic level. The emission shows a sublinear behavior at excitation powers exceeding 40 W/cm(2), caused by ground-state depletion due to the ms range luminescence lifetime. The thermal properties of the luminescence in K2SiF6: Mn4+ were investigated up to 450 K, with thermal quenching only setting in above 400 K. The luminescence lifetime decreases with increasing temperature, even before thermal quenching sets in, which is favorable to counteract the sublinear response at high excitation intensity. A second, faster, decay component emerges above 295 K, which, according to crystal field calculations, is related to a fraction of the Mn4+ ions incorporated on tetragonally deformed lattice sites. A combined investigation of structural and luminescence properties in a scanning electron microscope using energy-dispersive X-ray spectroscopy and cathodoluminescence mappings showed both phosphor degradation at high fluxes and a preferential location of the light outcoupling at irregularities in the crystal facets. The use of K2SiF6: Mn4+ in a remote phosphor configuration is discussed

    Morphological and molecular characterisation of Scutellonema species from yam (Dioscorea spp.) and a key to the species of the genus

    Get PDF
    The yam nematode, Scutellonema bradys, is a major threat to yam (Dioscorea spp.) production across yam-growing regions. In West Africa, this species cohabits with many morphologically similar congeners and, consequently, its accurate diagnosis is essential for control and for monitoring its movement. In the present study, 46 Scutellonema populations collected from yam rhizosphere and yam tubers in different agro-ecological zones in Ghana and Nigeria were characterised by their morphological features and by sequencing of the D2-D3 region of the 28S rDNA gene and the mitochondrial COI genes. Molecular phylogeny, molecular species delimitation and morphology revealed S. bradys, S. cavenessi, S. clathricaudatum and three undescribed species from yam rhizosphere. Only S. bradys was identified from yam tuber tissue, however. For barcoding and identifying Scutellonema spp., the most suitable marker used was the COI gene. Additionally, 99 new Scutellonema sequences were generated using populations obtained also from banana, carrot, maize and tomato, including the first for S. paralabiatum and S. clathricaudatum, enabling the development of a dichotomous key for identification of Scutellonema spp. The implications of these results are discussed

    Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence

    Get PDF
    Efficient broadband infrared (IR) light-emitting diodes (LEDs) are needed for emerging applications that exploit near-IR spectroscopy, ranging from hand-held electronics to medicine. Here we report broadband IR luminescence, cooperatively originating from Eu2+ and Tb3+ dopants in CaS. This peculiar emission overlaps with the red Eu2+ emission, ranges up to 1200 nm (full-width-at-half-maximum of 195 nm) and is efficiently excited with visible light. Experimental evidence for metal-to-metal charge transfer (MMCT) luminescence is collected, comprising data from luminescence spectroscopy, microscopy and X-ray spectroscopy. State-of-the-art multiconfigurational ab initio calculations attribute the IR emission to the radiative decay of a metastable MMCT state of a Eu2+-Tb3+ pair. The calculations explain why no MMCT emission is found in the similar compound SrS:Eu,Tb and are used to anticipate how to fine-tune the characteristics of the MMCT luminescence. Finally, a near-IR LED for versatile spectroscopic use is manufactured based on the MMCT emission. Broadband near-infrared (IR) light-emitting diodes (LEDs) are desirable for smart devices and bio-imaging applications, but the efficiency is limited by the phosphor materials. The authors report broadband emission in Eu-Tb co-doped CaS due to metal-to-metal charge transfer between dopants, and build a broadband near-IR LED with output surpassing the state of the art

    Airway surface dehydration aggravates cigarette smoke-induced hallmarks of COPD in mice

    Get PDF
    Introduction: Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. Objective: We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na+ channel (βENaC). Methods: βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Results: Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. Conclusions: We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD
    corecore