151 research outputs found

    Optimal oxygen saturations in preterm infants: a moving target.

    Get PDF
    Purpose of review New evidence is emerging to address the continued uncertainty regarding the optimal range to target oxygen saturation levels in preterm infants. Recent findings A recently published systematic review summarized the existing evidence for currently used oxygen saturation targets in preterm infants and highlighted the paucity of randomized trials addressing this topic. It appears that higher oxygen saturation levels increase the risk of severe retinopathy of prematurity and pulmonary morbidities. However, data regarding the effects of various target ranges on early mortality and long-term neurodevelopmental outcomes is lacking. A collaborative group of investigators from five independent randomized trials was established to answer this question definitively. Although the final analysis will not be available until 2014, interim results from four of these trials revealed an increase in early mortality when the lower oxygen saturation range is targeted. At present it may be prudent not to target oxygen saturation levels below 90%. Whatever the optimal range, consistently maintaining the newborn’s oxygen saturation levels within target proves an additional challenge for providers. Both technological advancements and optimized patient-caregiver ratios may be useful in achieving targeted oxygen saturation goals. Summary Defining and maintaining optimal oxygen saturations in preterm infants remains a challenge for clinicians caring for preterm infants. However, ongoing investigative collaborations may soon provide guidance

    A randomised controlled trial of oxygen therapy on growth and development of preterm infants

    Get PDF
    Background: Physiological studies have shown that many preterm infants and infants with chronic lung disease may suffer chronic hypoxaemia, which possibly leads to poor growth and development. Anecdotal reports indicate that there is a drive to increase the oxygen saturation target range to a higher level in these infants due primarily to perceived benefits derived from clinical experience and from uncontrolled observational studies of babies discharged on home oxygen. Objective The BOOST (Benefits Of Oxygen Saturation Targeting) trial is the first randomised trial to assess the long-term benefits and harms of two different oxygen saturation target ranges. Methods: BOOST was a multicentre, double blinded, randomised controlled trial that enrolled 358 infants born at less than 30 weeks� gestation who remained oxygen-dependent at 32 weeks postmenstrual age. They were randomly assigned to target either a functional oxygen saturation range of 91-94% (standard or control group) or 95-98% (higher or treatment group). The primary outcomes were growth and neurodevelopmental measures at 12 months corrected age. Secondary outcomes included length of hospital stay, retinopathy of prematurity, health service utilisation, parental stress, and infant temperament. Results: Prognostic baseline characteristics did not differ between the two groups. Mean birth weight and gestational age of enrolled infants was 917g and 26.5 weeks respectively. The rate of antenatal corticosteroid use was 83%

    Nutrient-enriched formula versus standard formula for preterm infants

    Get PDF
    BACKGROUND: Preterm infants may accumulate nutrient deficits leading to extrauterine growth restriction. Feeding preterm infants with nutrient-enriched rather than standard formula might increase nutrient accretion and growth rates and might improve neurodevelopmental outcomes. OBJECTIVES: To compare the effects of feeding with nutrient-enriched formula versus standard formula on growth and development of preterm infants. SEARCH METHODS: We used the Cochrane Neonatal standard search strategy. This included electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 11), MEDLINE, Embase, and the Cumulative Index to Nursing and Allied Health Literature (until November 2018), as well as conference proceedings, previous reviews, and clinical trials databases. SELECTION CRITERIA: Randomised and quasi-randomised controlled trials that compared feeding preterm infants with nutrient-enriched formula (protein and energy plus minerals, vitamins, or other nutrients) versus standard formula. DATA COLLECTION AND ANALYSIS: We extracted data using the Cochrane Neonatal standard methods. Two review authors separately evaluated trial quality and extracted and synthesised data using risk ratios (RRs), risk differences, and mean differences (MDs). We assessed certainty of evidence at the outcome level using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methods. MAIN RESULTS: We identified seven trials in which a total of 590 preterm infants participated. Most participants were clinically stable preterm infants of birth weight less than 1850 g. Few participants were extremely preterm, extremely low birth weight, or growth restricted at birth. Trials were conducted more than 30 years ago, were formula industry funded, and were small with methodological weaknesses (including lack of masking) that might bias effect estimates. Meta-analyses of in-hospital growth parameters were limited by statistical heterogeneity. There is no evidence of an effect on time to regain birth weight (MD -1.48 days, 95% confidence interval (CI) -4.73 to 1.77) and low-certainty evidence suggests that feeding with nutrient-enriched formula increases in-hospital rates of weight gain (MD 2.43 g/kg/d, 95% CI 1.60 to 3.26) and head circumference growth (MD 1.04 mm/week, 95% CI 0.18 to 1.89). Meta-analysis did not show an effect on the average rate of length gain (MD 0.22 mm/week, 95% CI -0.70 to 1.13). Fewer data are available for growth and developmental outcomes assessed beyond infancy, and these do not show consistent effects of nutrient-enriched formula feeding. Data from two trials did not show an effect on Bayley Mental Development Index scores at 18 months post term (MD 2.87, 95% CI -1.38 to 7.12; moderate-certainty evidence). Infants who received nutrient-enriched formula had higher Bayley Psychomotor Development Index scores at 18 months post term (MD 6.56. 95% CI 2.87 to 10.26; low-certainty evidence), but no evidence suggested an effect on cerebral palsy (typical RR 0.79, 95% CI 0.30 to 2.07; 2 studies, 377 infants). Available data did not indicate any other benefits or harms and provided low-certainty evidence about the effect of nutrient-enriched formula feeding on the risk of necrotising enterocolitis in preterm infants (typical RR 0.72, 95% CI 0.41 to 1.25; 3 studies, 489 infants). AUTHORS' CONCLUSIONS: Available trial data show that feeding preterm infants nutrient-enriched (compared with standard) formulas has only modest effects on growth rates during their initial hospital admission. No evidence suggests effects on long-term growth or development. The GRADE assessment indicates that the certainty of this evidence is low, and that these findings should be interpreted and applied with caution. Further randomised trials would be needed to resolve this uncertainty

    Do systematic reviews on pediatric topics need special methodological considerations?

    Get PDF
    Abstract Background Systematic reviews are key tools to enable decision making by healthcare providers and policymakers. Despite the availability of the evidence based Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA-2009 and PRISMA-P 2015) statements that were developed to improve the transparency and quality of reporting of systematic reviews, uncertainty on how to deal with pediatric-specific methodological challenges of systematic reviews impairs decision-making in child health. In this paper, we identify methodological challenges specific to the design, conduct and reporting of pediatric systematic reviews, and propose a process to address these challenges. Discussion One fundamental decision at the outset of a systematic review is whether to focus on a pediatric population only, or to include both adult and pediatric populations. Both from the policy and patient care point of view, the appropriateness of interventions and comparators administered to pre-defined pediatric age subgroup is critical. Decisions need to be based on the biological plausibility of differences in treatment effects across the developmental trajectory in children. Synthesis of evidence from different trials is often impaired by the use of outcomes and measurement instruments that differ between trials and are neither relevant nor validated in the pediatric population. Other issues specific to pediatric systematic reviews include lack of pediatric-sensitive search strategies and inconsistent choices of pediatric age subgroups in meta-analyses. In addition to these methodological issues generic to all pediatric systematic reviews, special considerations are required for reviews of health care interventions’ safety and efficacy in neonatology, global health, comparative effectiveness interventions and individual participant data meta-analyses. To date, there is no standard approach available to overcome this problem. We propose to develop a consensus-based checklist of essential items which researchers should consider when they are planning (PRISMA-PC-Protocol for Children) or reporting (PRISMA-C-reporting for Children) a pediatric systematic review. Summary Available guidelines including PRISMA do not cover the complexity associated with the conduct and reporting of systematic reviews in the pediatric population; they require additional and modified standards for reporting items. Such guidance will facilitate the translation of knowledge from the literature to bedside care and policy, thereby enhancing delivery of care and improving child health outcomes

    Repeat prenatal corticosteroid prior to preterm birth: a systematic review and individual participant data meta-analysis for the PRECISE study group (prenatal repeat corticosteroid international IPD study group: assessing the effects using the best level of evidence) - study protocol

    Get PDF
    Background The aim of this individual participant data (IPD) meta-analysis is to assess whether the effects of repeat prenatal corticosteroid treatment given to women at risk of preterm birth to benefit their babies are modified in a clinically meaningful way by factors related to the women or the trial protocol. Methods/Design The Prenatal Repeat Corticosteroid International IPD Study Group: assessing the effects using the best level of Evidence (PRECISE) Group will conduct an IPD meta-analysis. The PRECISE International Collaborative Group was formed in 2010 and data collection commenced in 2011. Eleven trials with up to 5,000 women and 6,000 infants are eligible for the PRECISE IPD meta-analysis. The primary study outcomes for the infants will be serious neonatal outcome (defined by the PRECISE International IPD Study Group as one of death (foetal, neonatal or infant); severe respiratory disease; severe intraventricular haemorrhage (grade 3 and 4); chronic lung disease; necrotising enterocolitis; serious retinopathy of prematurity; and cystic periventricular leukomalacia); use of respiratory support (defined as mechanical ventilation or continuous positive airways pressure or other respiratory support); and birth weight (Z-scores). For the children, the primary study outcomes will be death or any neurological disability (however defined by trialists at childhood follow up and may include developmental delay or intellectual impairment (developmental quotient or intelligence quotient more than one standard deviation below the mean), cerebral palsy (abnormality of tone with motor dysfunction), blindness (for example, corrected visual acuity worse than 6/60 in the better eye) or deafness (for example, hearing loss requiring amplification or worse)). For the women, the primary outcome will be maternal sepsis (defined as chorioamnionitis; pyrexia after trial entry requiring the use of antibiotics; puerperal sepsis; intrapartum fever requiring the use of antibiotics; or postnatal pyrexia). Discussion Data analyses are expected to commence in 2011 with results publicly available in 2012

    Assessing the neuroprotective benefits for babies of antenatal magnesium sulphate: an individual participant data meta-analysis

    Get PDF
    Background: Babies born preterm are at an increased risk of dying in the first weeks of life, and those who survive have a higher rate of cerebral palsy (CP) compared with babies born at term. The aim of this individual participant data (IPD) meta-analysis (MA) was to assess the effects of antenatal magnesium sulphate, compared with no magnesium treatment, given to women at risk of preterm birth on important maternal and fetal outcomes, including survival free of CP, and whether effects differed by participant or treatment characteristics such as the reason the woman was at risk of preterm birth, why treatment was given, the gestational age at which magnesium sulphate treatment was received, or the dose and timing of the administration of magnesium sulphate. Methods and findings: Trials in which women considered at risk of preterm birth (<37 weeks' gestation) were randomised to magnesium sulphate or control treatment and where neurologic outcomes for the baby were reported were eligible for inclusion. The primary outcomes were infant death or CP and severe maternal outcome potentially related to treatment. Studies were identified based on the Cochrane Pregnancy and Childbirth search strategy using the terms [antenatal or prenatal] and [magnesium] and [preterm or premature or neuroprotection or 'cerebral palsy']. The date of the last search was 28 February 2017. IPD were sought from investigators with eligible trials. Risk of bias was assessed using criteria from the Cochrane Collaboration. For each prespecified outcome, IPD were analysed using a 1-stage approach. All 5 trials identified were included, with 5,493 women and 6,131 babies. Overall, there was no clear effect of magnesium sulphate treatment compared with no treatment on the primary infant composite outcome of death or CP (relative risk [RR] 0.94, 95% confidence interval (CI) 0.85 to 1.05, 6,131 babies, 5 trials, p = 0.07 for heterogeneity of treatment effect across trials). In the prespecified sensitivity analysis restricted to data from the 4 trials in which the intent of treatment was fetal neuroprotection, there was a significant reduction in the risk of death or CP with magnesium sulphate treatment compared with no treatment (RR 0.86, 95% CI 0.75 to 0.99, 4,448 babies, 4 trials), with no significant heterogeneity (p = 0.28). The number needed to treat (NNT) to benefit was 41 women/babies to prevent 1 baby from either dying or having CP. For the primary outcome of severe maternal outcome potentially related to magnesium sulphate treatment, no events were recorded from the 2 trials providing data. When the individual components of the composite infant outcome were assessed, no effect was seen for death overall (RR 1.03, 95% CI 0.91 to 1.17, 6,131 babies, 5 trials) or in the analysis of death using only data from trials with the intent of fetal neuroprotection (RR 0.95, 95% CI 0.80 to 1.13, 4,448 babies, 4 trials). For cerebral palsy in survivors, magnesium sulphate treatment had a strong protective effect in both the overall analysis (RR 0.68, 95% CI 0.54 to 0.87, 4,601 babies, 5 trials, NNT to benefit 46) and the neuroprotective intent analysis (RR 0.68, 95% CI 0.53 to 0.87, 3,988 babies, 4 trials, NNT to benefit 42). No statistically significant differences were seen for any of the other secondary outcomes. The treatment effect varied little by the reason the woman was at risk of preterm birth, the gestational age at which magnesium sulphate treatment was given, the total dose received, or whether maintenance therapy was used. A limitation of the study was that not all trials could provide the data required for the planned analyses so that combined with low event rates for some important clinical events, the power to find a difference was limited. Conclusions: Antenatal magnesium sulphate given prior to preterm birth for fetal neuroprotection prevents CP and reduces the combined risk of fetal/infant death or CP. Benefit is seen regardless of the reason for preterm birth, with similar effects across a range of preterm gestational ages and different treatment regimens. Widespread adoption worldwide of this relatively inexpensive, easy-to-administer treatment would lead to important global health benefits for infants born preterm.Caroline A. Crowther, Philippa F. Middleton, Merryn Voysey, Lisa Askie, Lelia Duley, Peter G. Pryde, Stéphane Marret, Lex W. Doyle, for the AMICABLE Grou

    Latest update of the clinical trials landscape in Australia (2006 – 2020)

    Get PDF
    The latest update of the clinical trials landscape in Australia (2006 – 2020) uses trial registration data to gain an understanding of the clinical trials occurring in Australia. This report is an update of the original report covering 2006-2015 and includes new data from 2016 to 2020. These data are sourced from the Australian New Zealand Clinical Trials Registry (ANZCTR) and US-based ClinicalTrials.gov registry. The purpose of this report is to provide a comprehensive outline of the key characteristics of clinical trials over time. Reporting on clinical trial activity is a crucial step in understanding where improvements may be needed in the clinical trials sector. This report can be used as a reference point when promoting Australian clinical trial activity at national or international forums. It is intended to be used by all those working in or with clinical trials including clinical trial investigators, researchers, funders, industry, policymakers, trial participants and the public. Previous reports analysing trial activity in Australia have helped to identify research gaps and prioritise funding schemes and to inform the design of new national infrastructure that facilitates clinical trial data sharing. We hope this updated report will be of similar use and help to inform the health research agenda in government and industry
    • …
    corecore