332 research outputs found

    Improvement of corrosion resistance in NaOH solution and glass forming ability of as-cast Mg-based bulk metallic glasses by microalloying

    Get PDF
    The influences of the addition of Ag on the glass forming ability (GFA) and corrosion behavior were investigated in the Mg-Ni-based alloy system by X-ray diffraction (XRD) and electrochemical polarization in 0.1 mol/L NaOH solution. Results shows that the GFA of the Mg-Ni-based BMGs can be improved dramatically by the addition of an appropriate amount of Ag; and the addition element Ag can improve the corrosion resistance of Mg-Ni-based bulk metallic glass. The large difference in atomic size and large negative mixing enthalpy in alloy system can contribute to the high GFA. The addition element Ag improves the forming speed and the stability of the passive film, which is helpful to decrease the passivation current density and to improve the corrosion resistance of Mg-Ni-based bulk metallic glass

    A new numerical simulation model for high pressure squeezing moulding

    Get PDF
    High pressure squeeze is the most popular moulding process applied in modern moulding machines. Because of the unique characters of moulding sand and nonlinearity of squeezing process, the mechanical model is of key importance for computer simulation. Drucker-Prager/Cap is a typical soil mechanical theory model and it was used to simulate the squeezing process in this study, while ABAQUS software is used to simulate dynamic stress/strain evolution during the process. The simulation agrees well with the experimental results. We conclude that Drucker-Prager/Cap is an appropriate model for the squeezing compaction of moulding sand, and that the associated nonlinearity can be solved well with ABAQUS software

    Modeling the Braking Behavior of Micro-Mobility Vehicles

    Get PDF
    According to the community database on accidents on the roads in Europe, 2035 cyclist fatalities happened in Europe in 2019 [S]. In Sweden, 10440 bicycle crashes were reported in the Swedish Traffic Accident Data Acquisition database during 2019, and 30% of the cyclist fatalities were in car-to-cyclist rear-end crashes [6]. Nowadays, new micromobility vehicles (MMVs), for example, e-scooters, and Segways, are becoming more popular. Unlike traditional bicycles, these new MMVs usually have novel designs in appearance, kinematics, operation method, and power source (e.g., electricity-driven/assisted), which bring new hazards to traditional road users [1, 4]. Thus, it is essential to understand and quantify the behavior of the new MMV users to improve road safety

    Modeling collision avoidance maneuvers for micromobility vehicles

    Get PDF
    Introduction: In recent years, as novel micromobility vehicles (MMVs) have hit the market and rapidly gained popularity, new challenges in road safety have arisen, too. There is an urgent need for validated models that comprehensively describe the behaviour of such novel MMVs. This study aims to compare the longitudinal and lateral control of bicycles and e-scooters in a collision- avoidance scenario from a top-down perspective, and to propose appropriate quantitative models for parameterizing and predicting the trajectories of the avoidance—braking and steering— maneuvers. Method: We compared a large e-scooter and a light e-scooter with a bicycle (in assisted and non-assisted modes) in field trials to determine whether these new vehicles have different maneuverability constraints when avoiding a rear-end collision by braking and/or steering. Results: Braking performance in terms of deceleration and jerk varies among the different types of vehicles; specifically, e-scooters are not as effective at braking as bicycles, but the large e-scooter demonstrated better braking performance than the light one. No statistically significant difference was observed in the steering performance of the vehicles. Bicycles were perceived as more stable, maneuverable, and safe than e-scooters. The study also presents arctangent kinematic models for braking and steering, which demonstrate better accuracy and informativeness than linear models. Conclusions: This study demonstrates that the new micromobility solutions have some maneuverability characteristics which differ significantly from those of bicycles, and even within their own kind. Steering could be a more efficient collision- avoidance strategy for MMVs than braking under certain circumstances, such as in a rear-end collision. More complicated modelling for MMV kinematics can be beneficial but needs validation. Practical Applications: The proposed arctangent models could be used in new advanced driving assistance systems to prevent crashes between cars and MMV users. Micromobility safety could be improved by educating MMV riders to adapt their behavior accordingly. Further, knowledge about the differences in maneuverability between e-scooters and bicycles could inform infrastructure design, and traffic regulations

    Influence of apparent wave velocity on seismic performance of a super-long-span triple-tower suspension bridge

    Get PDF
    As one of the main characteristics of seismic waves, apparent wave velocity has great influence on seismic responses of long-span suspension bridges. Understanding these influences is important for seismic design. In this article, the critical issues concerning the traveling wave effect analysis are first reviewed. Taizhou Bridge, the longest triple-tower suspension bridge in the world, is then taken as an example for this investigation. A three-dimensional finite element model of the bridge is established in ABAQUS, and the LANCZOS eigenvalue solver is employed to calculate the structural dynamic characteristics. Traveling wave effect on seismic responses of these long-span triple-tower suspension bridges is investigated. Envelopes of seismic shear force and moment in the longitudinal direction along the three towers, relative displacements between the towers and the girder, and reaction forces at the bottoms of the three towers under different apparent wave velocities are calculated and presented in detail. The results show that the effect of apparent wave velocity on the seismic responses of triple-tower suspension bridge fluctuates when the velocity is lower than 2000 m/s, and the effects turn stable when the velocity becomes larger. In addition, the effects of traveling wave are closely related to spectral characteristics and propagation direction of the seismic wave, and seismic responses of components closer to the source are relatively larger. Therefore, reliable estimation of the seismic input and apparent wave velocity according to the characteristics of the bridge site are significant for accurate prediction of seismic responses. This study provides critical reference for seismic analysis and design of long-span triple-tower suspension bridges

    Numerical simulation of secondary breakup of shear-thinning droplets

    Full text link
    The breakup of non-Newtonian droplets is ubiquitous in numerous applications. Although the non-Newtonian property can significantly change the droplet breakup process, most previous studies consider Newtonian droplets, and the effects of the non-Newtonian properties on the breakup process are still unclear. This study focuses on the secondary breakup of shear-thinning droplets by numerical simulation. The volume of fluid method is used to capture interface dynamics on adaptive grids. To compare shear-thinning droplets and Newtonian droplets, a new definition of the Ohnesorge number is proposed by considering the characteristic shear rate in the droplet induced by the airflow. The results show that compared with the Newtonian fluid, the shear-thinning properties can change the effective viscosity distribution inside the droplet, alter the local deformation, change the droplet morphology, and affect the transition in the droplet breakup regime.Comment: 14 pages, 15 figure

    A systematic review on sustainability assessment of internal combustion engines

    Get PDF
    Internal combustion engines (ICEs) have served as the primary powertrain for mobile sources since the 1890s and also recognized as significant contributors to CO2 emissions in the transportation sector. In order to achieve "carbon neutrality" for transportation sectors, ICE vehicles (ICEVs) are facing substantial challenges in meeting CO2 regulations and intense competition from battery electric vehicles and fuel cell vehicles. Consequently, new technologies of ICEs are continually emerging to enhance competitiveness in reducing environmental impacts. However, the limited studies on the life cycle assessment (LCA) of ICEs make it difficult to evaluate the actual contributions of the emerging technologies from a life cycle perspective. Conducting a systematic review of ICEs LCA studies could identify weaknesses and gaps in these studies for new scenarios. Therefore, this article presents the first systematic review of the LCA of ICEs to provide an overview of the current state of knowledge. A total of 87 life cycle assessment studies between 2017 and 2023 using the Scopus database were identified after searching for the keywords "Sustainability assessment" OR "Life cycle assessment" AND "Internal combustion engine*" OR "ICE*" and carefully screening, and then classified and analyzed by six aspects including sustainability indicators, life cycle phases, life cycle inventories, ICE technologies (including alternative fuels), types of mobile sources and powertrain systems. It is concluded that there are quite limited studies solely focusing on LCA of ICEs, and the LCA assessment lacks consideration of: 1. environmental pollution, human health and socio-economic aspects, 2. fuel production process and maintenance & repair phase, 3. small and developing countries, 4. the emerging ICE technologies and zero carbon/carbon-neutral fuels, 5. large and high-power mobile sources and heavy-duty hybrid technologies
    • …
    corecore