Numerical simulation of secondary breakup of shear-thinning droplets

Abstract

The breakup of non-Newtonian droplets is ubiquitous in numerous applications. Although the non-Newtonian property can significantly change the droplet breakup process, most previous studies consider Newtonian droplets, and the effects of the non-Newtonian properties on the breakup process are still unclear. This study focuses on the secondary breakup of shear-thinning droplets by numerical simulation. The volume of fluid method is used to capture interface dynamics on adaptive grids. To compare shear-thinning droplets and Newtonian droplets, a new definition of the Ohnesorge number is proposed by considering the characteristic shear rate in the droplet induced by the airflow. The results show that compared with the Newtonian fluid, the shear-thinning properties can change the effective viscosity distribution inside the droplet, alter the local deformation, change the droplet morphology, and affect the transition in the droplet breakup regime.Comment: 14 pages, 15 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions