1,153 research outputs found
Dynamic Command Scheduling for Real-Time Memory Controllers
Memory controller design is challenging as real-time embedded systems feature an increasing diversity of real-time and non-real-time applications with variable transaction sizes. To satisfy the requirements of the applications, tight bounds on the worst-case execution time (WCET) of memory transactions must be provided to real-time applications, while the lowest possible average execution time must be given to the rest. Existing real-time memory controllers cannot efficiently achieve this goal as they either bound the WCET by sacrificing the average execution time, or are not scalable to directly support variable transaction sizes, or both. In this paper, we propose to use dynamic command scheduling, which is capable of efficiently dealing with transactions with variable sizes. The three main contributions of this paper are: 1) a back-end architecture for a real-time memory controller with a dynamic command scheduling algorithm, 2) a formalization of the timings of the memory transactions for the proposed architecture and algorithm, and 3) two techniques to bound the WCET of transactions with both fixed and variable sizes, respectively. We experimentally evaluate the proposed memory controller and compare both the worst-case and average-case execution times of transactions to a state-of-the-art semi-static approach. The results demonstrate that dynamic command scheduling outperforms the semi-static approach by 33.4% in the average case and performs at least equally well in the worst case. We also show the WCET is tight for transactions with fixed and variable sizes, respectively
Superprocesses as models for information dissemination in the Future Internet
Future Internet will be composed by a tremendous number of potentially
interconnected people and devices, offering a variety of services, applications
and communication opportunities. In particular, short-range wireless
communications, which are available on almost all portable devices, will enable
the formation of the largest cloud of interconnected, smart computing devices
mankind has ever dreamed about: the Proximate Internet. In this paper, we
consider superprocesses, more specifically super Brownian motion, as a suitable
mathematical model to analyse a basic problem of information dissemination
arising in the context of Proximate Internet. The proposed model provides a
promising analytical framework to both study theoretical properties related to
the information dissemination process and to devise efficient and reliable
simulation schemes for very large systems
Generation of an axially asymmetric bessel-like beam from a metallic subwavelength aperture
An electromagnetic nondiffractive Bessel-like beam from a subwavelength aperture is generated by placing a metallic circular gratinglike structure in front of the aperture. When the incident wave is linearly polarized, the beam is axially asymmetric. The beam possesses fluctuating, but approximately uniform, intensity distribution along its longitudinal axis. The full width at half maximum of the beam remains less than two wavelengths over nearly ten wavelengths. Our experimental results are in good agreement with the simulation results and analytical results. © 2009 The American Physical Society
A prospective study of physician-observed concussion during a varsity university hockey season: White matter integrity in ice hockey players. Part 3 of 4
Object: The aim of this study was to investigate the effect of repetitive head impacts on white matter integrity that were sustained during 1 Canadian Interuniversity Sports (CIS) ice hockey season, using advanced diffusion tensor imaging (DTI). Methods: Twenty-five male ice hockey players between 20 and 26 years of age (mean age 22.24 ± 1.59 years) participated in this study. Participants underwent pre- and postseason 3-T MRI, including DTI. Group analyses were performed using paired-group tract-based spatial statistics to test for differences between preseason and postseason changes. Results: Tract-based spatial statistics revealed an increase in trace, radial diffusivity (RD), and axial diffusivity (AD) over the course of 1 season. Compared with preseason data, postseason images showed higher trace, AD, and RD values in the right precentral region, the right corona radiata, and the anterior and posterior limb of the internal capsule. These regions involve parts of the corticospinal tract, the corpus callosum, and the superior longitudinal fasciculus. No significant differences were observed between preseason and postseason for fractional anisotropy. Conclusions: Diffusion tensor imaging revealed changes in white matter diffusivity in male ice hockey players over the course of 1 season. The origin of these findings needs to be elucidated
Density of states and magnetoconductance of disordered Au point contacts
We report the first low temperature magnetotransport measurements on
electrochemically fabricated atomic scale gold nanojunctions. As , the
junctions exhibit nonperturbatively large zero bias anomalies (ZBAs) in their
differential conductance. We consider several explanations and find that the
ZBAs are consistent with a reduced local density of states (LDOS) in the
disordered metal. We suggest that this is a result of Coulomb interactions in a
granular metal with moderate intergrain coupling. Magnetoconductance of atomic
scale junctions also differs significantly from that of less geometrically
constrained devices, and supports this explanation.Comment: 5 pages, 5 figures. Accepted to PRB as Brief Repor
The relative error of calculations at the Pöschl-Teller model potential for the planar channeled muon
In the framework of quantum mechanics, we investigate muon channeling in the Si (200) crystal. The transverse energy levels and wave functions are obtained for the Pöschl-Teller and the Doyle-Turner potentials. Comparative analysis demonstrates that analytical results of calculations obtained on the base of the Pöschl-Teller potential are in a good agreement with the numerical results of calculations in the Doyle-Turner model for the low energy levels. These results for the muon with rest mass m[mu] and relativistic factor [gamma] are valid for any particle with elementary charge and rest mass m and relativistic factor [gamma][m]=[gamma](m[mu]/m). Therefore, our results can be useful for the preparation and performing the experimental investigation of the various phenomena accompanying particle channeling
Effects of surface plasma treatment on threshold voltage hysteresis and instability in metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure HEMTs
In a bid to understand the commonly observed hysteresis in the threshold voltage (VTH) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors during forward gate bias stress, we have analyzed a series of measurements on devices with no surface treatment and with two different plasma treatments before the in-situ Al2O3 deposition. The observed changes between samples were quasi-equilibrium VTH, forward bias related VTH hysteresis, and electrical response to reverse bias stress. To explain these effects, a disorder induced gap state model, combined with a discrete level donor, at the dielectric/semiconductor interface was employed. Technology Computer-Aided Design modeling demonstrated the possible differences in the interface state distributions that could give a consistent explanation for the observations
Anisotropic superconductivity mediated by phonons in layered compounds with weak screening effect
Anisotropic pairing interactions mediated by phonons are examined in layer
systems. It is shown that the screening effects become weaker when the layer
spacing increases. Then the anisotropic components of the pairing interactions
increase with the screening length since the momentum dependence changes. As a
result, various types of anisotropic superconductivity occur depending on the
parameter region. For example, p-wave superconductivity occurs when the
short-range part of Coulomb repulsion is strong and the layer spacing is large.
Two kinds of inter-layer pairing may occur when the layer spacing is not too
large. Although the phonon contribution to the d-wave pairing interaction is
weaker than the p-wave interaction, it increases with the layer spacing.
Relevance of the present results to organic superconductors, high-T_c cuprates,
and Sr_2RuO_4 is discussed.Comment: 8 pages, 5 figures, (Latex, revtex.sty, epsf.sty
Prognostic factors for long-term outcomes in relapsing-remitting multiple sclerosis
Objective: The objective of this article is to investigate potential clinical and MRI predictors of long-term outcomes in multiple sclerosis (MS).
Methods: This was a post hoc analysis using data from all 382 patients in the PRISMS long-term follow-up (LTFU) study collected up to eight years after randomisation. An additional analysis was performed including only those patients originally randomised to receive early subcutaneous interferon (IFN) β-1a (n = 259). Baseline/prestudy variables, indicators of early clinical and MRI activity (baseline to month 24), and indicators of IFN β-1a treatment exposure (including medication possession ratio (MPR)) were investigated as candidate prognostic factors for outcomes measured from baseline and from month 24 to LTFU. Explanatory variables identified from univariate regression models (p ≤ 0.15) were selected for inclusion in stepwise multiple regression models.
Results: Candidate prognostic factors selected by the univariate analysis (p ≤ 0.15) included age, MS duration, baseline brain volume, EDSS score, and log(T2 burden of disease (BOD)). In most of the multivariate regression models applied, higher baseline brain volume and MPR predicted better long-term clinical outcomes, while higher baseline and greater early increase in EDSS score predicted worse outcomes.
Conclusion: Identification of markers that may be prognostic for long-term disability could help identify MS patients at higher risk of disability progression
- …