1,358 research outputs found

    Long-Range Four-body Interactions in Structured Nonlinear Photonic Waveguides

    Full text link
    Multi-photon dynamics beyond linear optical materials are of significant fundamental and technological importance in quantum information processing. However, it remains largely unexplored in nonlinear waveguide QED. In this work, we theoretically propose a structured nonlinear waveguide in the presence of staggered photon-photon interactions, which supports two branches of gaped bands for doublons (i.e., spatially bound-photon-pair states). In contrast to linear waveguide QED systems, we identify two important contributions to its dynamical evolution, i.e., single-photon bound states (SPBSs) and doublon bound states (DBSs). Most remarkably, the nonlinear waveguide can mediate the long-range four-body interactions between two emitter pairs, even in the presence of disturbance from SPBS. By appropriately designing system's parameters, we can achieve high-fidelity four-body Rabi oscillations mediated only by virtual doublons in DBSs. Our findings pave the way for applying structured nonlinear waveguide QED in multi-body quantum information processing and quantum simulations among remote sites.Comment: 18 pages; 9 figure

    Metabolic interactions between dynamic bacterial subpopulations

    Get PDF
    Individual microbial species are known to occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Here, we show that exponentially growing Bacillus subtilis cultures divide into distinct interacting metabolic subpopulations, including one population that produces acetate, and another population that differentially expresses metabolic genes for the production of acetoin, a pH-neutral storage molecule. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Furthermore, acetate concentration influences the relative sizes of the different subpopulations. These results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching

    China and the WTO: Progress, Perils, and Prospects

    Get PDF
    In November 2001, member states of the World Trade Organization (WTO) approved the proposal to admit China to the international trading body. After fifteen years of exhaustive negotiations, China finally became the 143rd member of the WTO on December 11, 2001. To reflect on this event, this panel brings together six China experts to explore the ramifications of China\u27s accession to the WTO. Among the issues addressed are whether China is making progress in its compliance with the WTO requirements, whether China is suffering setbacks in the socio-economic arena, whether there are any prospects for democratic reforms and stronger human rights and environmental protection in the country, and what the WTO accession means to China\u27s neighbors and the global community

    Metabolic interactions between dynamic bacterial subpopulations

    Get PDF
    Individual microbial species are known to occupy distinct metabolic niches within multi-species communities. However, it has remained largely unclear whether metabolic specialization can similarly occur within a clonal bacterial population. More specifically, it is not clear what functions such specialization could provide and how specialization could be coordinated dynamically. Here, we show that exponentially growing Bacillus subtilis cultures divide into distinct interacting metabolic subpopulations, including one population that produces acetate, and another population that differentially expresses metabolic genes for the production of acetoin, a pH-neutral storage molecule. These subpopulations exhibit distinct growth rates and dynamic interconversion between states. Furthermore, acetate concentration influences the relative sizes of the different subpopulations. These results show that clonal populations can use metabolic specialization to control the environment through a process of dynamic, environmentally-sensitive state-switching

    Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection

    Full text link
    Event detection (ED), a sub-task of event extraction, involves identifying triggers and categorizing event mentions. Existing methods primarily rely upon supervised learning and require large-scale labeled event datasets which are unfortunately not readily available in many real-life applications. In this paper, we consider and reformulate the ED task with limited labeled data as a Few-Shot Learning problem. We propose a Dynamic-Memory-Based Prototypical Network (DMB-PN), which exploits Dynamic Memory Network (DMN) to not only learn better prototypes for event types, but also produce more robust sentence encodings for event mentions. Differing from vanilla prototypical networks simply computing event prototypes by averaging, which only consume event mentions once, our model is more robust and is capable of distilling contextual information from event mentions for multiple times due to the multi-hop mechanism of DMNs. The experiments show that DMB-PN not only deals with sample scarcity better than a series of baseline models but also performs more robustly when the variety of event types is relatively large and the instance quantity is extremely small.Comment: Accepted by WSDM 202

    Transcript-indexed ATAC-seq for precision immune profiling.

    Get PDF
    T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy

    Transport in three-dimensional topological insulators: theory and experiment

    Full text link
    This article reviews recent theoretical and experimental work on transport due to the surface states of three-dimensional topological insulators. The theoretical focus is on longitudinal transport in the presence of an electric field, including Boltzmann transport, quantum corrections and weak localization, as well as longitudinal and Hall transport in the presence of both electric and magnetic fields and/or magnetizations. Special attention is paid to transport at finite doping, to the π\pi-Berry phase, which leads to the absence of backscattering, Klein tunneling and half-quantized Hall response. Signatures of surface states in ordinary transport and magnetotransport are clearly identified. The review also covers transport experiments of the past years, reviewing the initial obscuring of surface transport by bulk transport, and the way transport due to the surface states has increasingly been identified experimentally. Current and likely future experimental challenges are given prominence and the current status of the field is assessed.Comment: Review article to appear in Physica
    corecore