15 research outputs found
Compact infrared cryogenic wafer-level camera: design and experimental validation
International audienceWe present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120 degrees. By merging the optics with the detector, the concept is compatible with both cryogenic constraints and wafer-level fabrication. The design strategy of such a camera is described, as well as its fabrication and integration process. Its characterization has been carried out in terms of the modulation transfer function and the noise equivalent temperature difference (NETD). The optical system is limited by the diffraction. By cooling the optics, we achieve a very low NETD equal to 15 mK compared with traditional infrared cameras. A postprocessing algorithm that aims at reconstructing a well-sampled image from the set of undersampled raw subimages produced by the camera is proposed and validated on experimental images. (C) 2012 Optical Society of Americ
Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC):Study protocol for randomised controlled trial
Peer reviewedPublisher PD
Etude d'un cycle organique de Rankine couplé à un systÚme passif innovant : application aux réacteurs nucléaires avancés
This work contributes to the design of passive backup systems for pressurized water reactors (PWRs) in use today.The reactor core residual power is the heat produced by the fission products left over after the nuclear reaction in the core has stopped. Passive safety condensers are one method for eliminating this power by using a large amount of water placed very high up, allowing residual heat to be removed naturally through convection. This uses a large amount of water that takes a long time to heat up to boiling temperature.The fundamental concept is to use a portion of the energy contained in this volume of boiling water as a heat source for a thermodynamic cycle through an immersed heat exchanger. The cycle power output will be used to supplement existing resources by providing electricity to various operating components on its own.The conversion of low and medium-temperature (< 150 °C) industrial or renewable (biomass, solar, geothermal) waste heat into electricity is a key challenge in energy efficiency. The organic Rankine cycle (ORC), which has been used on both laboratory and industrial scales for about ten years, is one potential method for capturing this heat.The nature of the hot source and the requirement for robustness and reliability in the system are two peculiarities related to the context of this work. In addition to the typical constraints imposed on this type of cycle, such as maximizing energy performance, respecting the environment, and minimizing space requirements.The purpose of the thesis was to investigate the behaviour of this complex system based on an ORC cycle using a methodology that combined modelling and experimentation, and thereby contribute to proving the validity of the selected approach. More specifically, an experimental test bench simulating the coupling between an ORC and a boiling water tank was dimensioned using a theoretical model. Thus, the satisfactory operation of the cycle and its adaptability to specific non-nominal conditions, such as an increase in the cold source temperature, the presence of liquid droplets at the turbine inlet, or the effects of a the working fluid charge in the ORC circuit, were both experimentally investigated. The ORC in the studied range have proven to be extremely reliable for a number of working fluids (Novec649TM, HFE7100) based on all of these off-design criteria. Architectural studies that were specifically focused on the coupling of ORC and water tank were also completed, with particular attention paid to the position of the evaporator immersed in the tank and the imposed power variation.All of these experimental findings aided the numerical simulations and theoretical models of the EES software. Finally, using these models allowed us to size the ORC on an industrial scale and make suggestions. These are specifically related to the ORC and condenser pool coupling architecture, as well as the multi-criteria analysis used to select the working fluid.Ce travail sâinscrit dans le cadre de la mise au point de systĂšmes passifs dans lâarchitecture de systĂšmes de sauvegarde de rĂ©acteurs Ă eau pressurisĂ©s (REP) avancĂ©s.Lors de lâarrĂȘt de la rĂ©action nuclĂ©aire au sein du cĆur du rĂ©acteur, les produits de fission prĂ©sents dans le cĆur continuent de produire de la chaleur : il sâagit de la puissance rĂ©siduelle du cĆur du rĂ©acteur. Une solution pour Ă©vacuer cette puissance consiste Ă venir utiliser une grande quantitĂ© dâeau placĂ©e en hauteur, qui par convection naturelle, va permettre dâĂ©vacuer cette chaleur rĂ©siduelle : on parle de condenseurs passifs de sĂ»retĂ©. On dispose ainsi de volumes dâeau trĂšs importants qui sâĂ©chauffent jusquâĂ Ă©bullition et pendant une durĂ©e relativement longue.LâidĂ©e motrice est donc dâutiliser une partie de lâĂ©nergie stockĂ©e dans ce volume dâeau bouillante pour servir de source chaude Ă un cycle thermodynamique au travers dâun Ă©changeur de chaleur immergĂ©. La puissance produite par le cycle permettra dâalimenter en Ă©lectricitĂ© et de façon autonome divers organes utiles au fonctionnement, en complĂ©ment de moyens existants.Cette problĂ©matique rejoint un enjeu majeur de lâefficacitĂ© Ă©nergĂ©tique : celui de la valorisation de la chaleur fatale industrielle ou renouvelable (biomasse, solaire, gĂ©othermale) Ă faible et moyenne tempĂ©rature (<150âC) en Ă©lectricitĂ©. Une solution possible pour exploiter cette chaleur est lâutilisation dâun cycle de Rankine Ă fluide organique (ORC), systĂšme mis en Ćuvre tant Ă lâĂ©chelle du laboratoire quâĂ lâĂ©chelle industrielle depuis une dizaine dâannĂ©es.Deux singularitĂ©s liĂ©es au contexte de ce travail rĂ©sident dans la nature de la source chaude et dans lâexigence de fiabilitĂ© et de robustesse de ce systĂšme ; ces deux difficultĂ©s majeures sâajoutent aux contraintes habituellement demandĂ©es Ă ce type de cycle : maximisation de la performance Ă©nergĂ©tique, respect de lâenvironnement et minimisation de lâencombrement.L'objectif de la thĂšse a Ă©tĂ© d'Ă©tudier le comportement de ce systĂšme complexe basĂ© sur un cycle ORC, par une approche associant la modĂ©lisation et de l'expĂ©rimentation, et ainsi d'apporter une contribution Ă la dĂ©monstration de fiabilitĂ© de la solution retenue. De façon plus prĂ©cise, un modĂšle thĂ©orique a permis de dimensionner un banc dâessais expĂ©rimental reprĂ©sentant le couplage entre un ORC et une cuve dâeau bouillante. Ainsi a Ă©tĂ© Ă©tudiĂ©e expĂ©rimentalement le fonctionnement satisfaisant du cycle ainsi que son adaptabilitĂ© Ă certaines conditions hors nominales telles que lâaugmentation de la tempĂ©rature de source froide, la prĂ©sence de gouttelettes de liquide en entrĂ©e de la turbine ou encore les consĂ©quences dâune variation de la quantitĂ© de fluide de travail dans le circuit ORC. Lâensemble de ces critĂšres off-design ont dĂ©montrĂ© une fiabilitĂ© intĂ©ressante des ORC dans la gamme Ă©tudiĂ©e et ce, pour plusieurs fluides de travail (NOVEC649, HFE7100). Des Ă©tudes dâarchitecture propres au couplage ORC et cuve dâeau ont aussi Ă©tĂ© menĂ©es, notamment sur la position de lâĂ©vaporateur immergĂ© dans la cuve et sur la variation de puissance imposĂ©e.Lâensemble de ces rĂ©sultats expĂ©rimentaux ont permis de valider les modĂšles thĂ©oriques et les simulations numĂ©riques rĂ©alisĂ©es avec le logiciel EES. Ces modĂšles, ont enfin permis de rĂ©aliser un dimensionnement Ă lâĂ©chelle industrielle de lâORC ainsi que de proposer des recommandations. Celles-ci portent notamment sur le choix du fluide de travail au travers dâune analyse multicritĂšre et sur lâarchitecture du couplage ORC et piscine condenseur
Etude d'un cycle organique de Rankine couplé à un systÚme passif innovant : application aux réacteurs nucléaires avancés
This work contributes to the design of passive backup systems for pressurized water reactors (PWRs) in use today.The reactor core residual power is the heat produced by the fission products left over after the nuclear reaction in the core has stopped. Passive safety condensers are one method for eliminating this power by using a large amount of water placed very high up, allowing residual heat to be removed naturally through convection. This uses a large amount of water that takes a long time to heat up to boiling temperature.The fundamental concept is to use a portion of the energy contained in this volume of boiling water as a heat source for a thermodynamic cycle through an immersed heat exchanger. The cycle power output will be used to supplement existing resources by providing electricity to various operating components on its own.The conversion of low and medium-temperature (< 150 °C) industrial or renewable (biomass, solar, geothermal) waste heat into electricity is a key challenge in energy efficiency. The organic Rankine cycle (ORC), which has been used on both laboratory and industrial scales for about ten years, is one potential method for capturing this heat.The nature of the hot source and the requirement for robustness and reliability in the system are two peculiarities related to the context of this work. In addition to the typical constraints imposed on this type of cycle, such as maximizing energy performance, respecting the environment, and minimizing space requirements.The purpose of the thesis was to investigate the behaviour of this complex system based on an ORC cycle using a methodology that combined modelling and experimentation, and thereby contribute to proving the validity of the selected approach. More specifically, an experimental test bench simulating the coupling between an ORC and a boiling water tank was dimensioned using a theoretical model. Thus, the satisfactory operation of the cycle and its adaptability to specific non-nominal conditions, such as an increase in the cold source temperature, the presence of liquid droplets at the turbine inlet, or the effects of a the working fluid charge in the ORC circuit, were both experimentally investigated. The ORC in the studied range have proven to be extremely reliable for a number of working fluids (Novec649TM, HFE7100) based on all of these off-design criteria. Architectural studies that were specifically focused on the coupling of ORC and water tank were also completed, with particular attention paid to the position of the evaporator immersed in the tank and the imposed power variation.All of these experimental findings aided the numerical simulations and theoretical models of the EES software. Finally, using these models allowed us to size the ORC on an industrial scale and make suggestions. These are specifically related to the ORC and condenser pool coupling architecture, as well as the multi-criteria analysis used to select the working fluid.Ce travail sâinscrit dans le cadre de la mise au point de systĂšmes passifs dans lâarchitecture de systĂšmes de sauvegarde de rĂ©acteurs Ă eau pressurisĂ©s (REP) avancĂ©s.Lors de lâarrĂȘt de la rĂ©action nuclĂ©aire au sein du cĆur du rĂ©acteur, les produits de fission prĂ©sents dans le cĆur continuent de produire de la chaleur : il sâagit de la puissance rĂ©siduelle du cĆur du rĂ©acteur. Une solution pour Ă©vacuer cette puissance consiste Ă venir utiliser une grande quantitĂ© dâeau placĂ©e en hauteur, qui par convection naturelle, va permettre dâĂ©vacuer cette chaleur rĂ©siduelle : on parle de condenseurs passifs de sĂ»retĂ©. On dispose ainsi de volumes dâeau trĂšs importants qui sâĂ©chauffent jusquâĂ Ă©bullition et pendant une durĂ©e relativement longue.LâidĂ©e motrice est donc dâutiliser une partie de lâĂ©nergie stockĂ©e dans ce volume dâeau bouillante pour servir de source chaude Ă un cycle thermodynamique au travers dâun Ă©changeur de chaleur immergĂ©. La puissance produite par le cycle permettra dâalimenter en Ă©lectricitĂ© et de façon autonome divers organes utiles au fonctionnement, en complĂ©ment de moyens existants.Cette problĂ©matique rejoint un enjeu majeur de lâefficacitĂ© Ă©nergĂ©tique : celui de la valorisation de la chaleur fatale industrielle ou renouvelable (biomasse, solaire, gĂ©othermale) Ă faible et moyenne tempĂ©rature (<150âC) en Ă©lectricitĂ©. Une solution possible pour exploiter cette chaleur est lâutilisation dâun cycle de Rankine Ă fluide organique (ORC), systĂšme mis en Ćuvre tant Ă lâĂ©chelle du laboratoire quâĂ lâĂ©chelle industrielle depuis une dizaine dâannĂ©es.Deux singularitĂ©s liĂ©es au contexte de ce travail rĂ©sident dans la nature de la source chaude et dans lâexigence de fiabilitĂ© et de robustesse de ce systĂšme ; ces deux difficultĂ©s majeures sâajoutent aux contraintes habituellement demandĂ©es Ă ce type de cycle : maximisation de la performance Ă©nergĂ©tique, respect de lâenvironnement et minimisation de lâencombrement.L'objectif de la thĂšse a Ă©tĂ© d'Ă©tudier le comportement de ce systĂšme complexe basĂ© sur un cycle ORC, par une approche associant la modĂ©lisation et de l'expĂ©rimentation, et ainsi d'apporter une contribution Ă la dĂ©monstration de fiabilitĂ© de la solution retenue. De façon plus prĂ©cise, un modĂšle thĂ©orique a permis de dimensionner un banc dâessais expĂ©rimental reprĂ©sentant le couplage entre un ORC et une cuve dâeau bouillante. Ainsi a Ă©tĂ© Ă©tudiĂ©e expĂ©rimentalement le fonctionnement satisfaisant du cycle ainsi que son adaptabilitĂ© Ă certaines conditions hors nominales telles que lâaugmentation de la tempĂ©rature de source froide, la prĂ©sence de gouttelettes de liquide en entrĂ©e de la turbine ou encore les consĂ©quences dâune variation de la quantitĂ© de fluide de travail dans le circuit ORC. Lâensemble de ces critĂšres off-design ont dĂ©montrĂ© une fiabilitĂ© intĂ©ressante des ORC dans la gamme Ă©tudiĂ©e et ce, pour plusieurs fluides de travail (NOVEC649, HFE7100). Des Ă©tudes dâarchitecture propres au couplage ORC et cuve dâeau ont aussi Ă©tĂ© menĂ©es, notamment sur la position de lâĂ©vaporateur immergĂ© dans la cuve et sur la variation de puissance imposĂ©e.Lâensemble de ces rĂ©sultats expĂ©rimentaux ont permis de valider les modĂšles thĂ©oriques et les simulations numĂ©riques rĂ©alisĂ©es avec le logiciel EES. Ces modĂšles, ont enfin permis de rĂ©aliser un dimensionnement Ă lâĂ©chelle industrielle de lâORC ainsi que de proposer des recommandations. Celles-ci portent notamment sur le choix du fluide de travail au travers dâune analyse multicritĂšre et sur lâarchitecture du couplage ORC et piscine condenseur
Study of an organic Rankine cycle associated to an innovative passive system : application to advanced nuclear power plant
Ce travail sâinscrit dans le cadre de la mise au point de systĂšmes passifs dans lâarchitecture de systĂšmes de sauvegarde de rĂ©acteurs Ă eau pressurisĂ©s (REP) avancĂ©s.Lors de lâarrĂȘt de la rĂ©action nuclĂ©aire au sein du cĆur du rĂ©acteur, les produits de fission prĂ©sents dans le cĆur continuent de produire de la chaleur : il sâagit de la puissance rĂ©siduelle du cĆur du rĂ©acteur. Une solution pour Ă©vacuer cette puissance consiste Ă venir utiliser une grande quantitĂ© dâeau placĂ©e en hauteur, qui par convection naturelle, va permettre dâĂ©vacuer cette chaleur rĂ©siduelle : on parle de condenseurs passifs de sĂ»retĂ©. On dispose ainsi de volumes dâeau trĂšs importants qui sâĂ©chauffent jusquâĂ Ă©bullition et pendant une durĂ©e relativement longue.LâidĂ©e motrice est donc dâutiliser une partie de lâĂ©nergie stockĂ©e dans ce volume dâeau bouillante pour servir de source chaude Ă un cycle thermodynamique au travers dâun Ă©changeur de chaleur immergĂ©. La puissance produite par le cycle permettra dâalimenter en Ă©lectricitĂ© et de façon autonome divers organes utiles au fonctionnement, en complĂ©ment de moyens existants.Cette problĂ©matique rejoint un enjeu majeur de lâefficacitĂ© Ă©nergĂ©tique : celui de la valorisation de la chaleur fatale industrielle ou renouvelable (biomasse, solaire, gĂ©othermale) Ă faible et moyenne tempĂ©rature (<150âC) en Ă©lectricitĂ©. Une solution possible pour exploiter cette chaleur est lâutilisation dâun cycle de Rankine Ă fluide organique (ORC), systĂšme mis en Ćuvre tant Ă lâĂ©chelle du laboratoire quâĂ lâĂ©chelle industrielle depuis une dizaine dâannĂ©es.Deux singularitĂ©s liĂ©es au contexte de ce travail rĂ©sident dans la nature de la source chaude et dans lâexigence de fiabilitĂ© et de robustesse de ce systĂšme ; ces deux difficultĂ©s majeures sâajoutent aux contraintes habituellement demandĂ©es Ă ce type de cycle : maximisation de la performance Ă©nergĂ©tique, respect de lâenvironnement et minimisation de lâencombrement.L'objectif de la thĂšse a Ă©tĂ© d'Ă©tudier le comportement de ce systĂšme complexe basĂ© sur un cycle ORC, par une approche associant la modĂ©lisation et de l'expĂ©rimentation, et ainsi d'apporter une contribution Ă la dĂ©monstration de fiabilitĂ© de la solution retenue. De façon plus prĂ©cise, un modĂšle thĂ©orique a permis de dimensionner un banc dâessais expĂ©rimental reprĂ©sentant le couplage entre un ORC et une cuve dâeau bouillante. Ainsi a Ă©tĂ© Ă©tudiĂ©e expĂ©rimentalement le fonctionnement satisfaisant du cycle ainsi que son adaptabilitĂ© Ă certaines conditions hors nominales telles que lâaugmentation de la tempĂ©rature de source froide, la prĂ©sence de gouttelettes de liquide en entrĂ©e de la turbine ou encore les consĂ©quences dâune variation de la quantitĂ© de fluide de travail dans le circuit ORC. Lâensemble de ces critĂšres off-design ont dĂ©montrĂ© une fiabilitĂ© intĂ©ressante des ORC dans la gamme Ă©tudiĂ©e et ce, pour plusieurs fluides de travail (NOVEC649, HFE7100). Des Ă©tudes dâarchitecture propres au couplage ORC et cuve dâeau ont aussi Ă©tĂ© menĂ©es, notamment sur la position de lâĂ©vaporateur immergĂ© dans la cuve et sur la variation de puissance imposĂ©e.Lâensemble de ces rĂ©sultats expĂ©rimentaux ont permis de valider les modĂšles thĂ©oriques et les simulations numĂ©riques rĂ©alisĂ©es avec le logiciel EES. Ces modĂšles, ont enfin permis de rĂ©aliser un dimensionnement Ă lâĂ©chelle industrielle de lâORC ainsi que de proposer des recommandations. Celles-ci portent notamment sur le choix du fluide de travail au travers dâune analyse multicritĂšre et sur lâarchitecture du couplage ORC et piscine condenseur.This work contributes to the design of passive backup systems for pressurized water reactors (PWRs) in use today.The reactor core residual power is the heat produced by the fission products left over after the nuclear reaction in the core has stopped. Passive safety condensers are one method for eliminating this power by using a large amount of water placed very high up, allowing residual heat to be removed naturally through convection. This uses a large amount of water that takes a long time to heat up to boiling temperature.The fundamental concept is to use a portion of the energy contained in this volume of boiling water as a heat source for a thermodynamic cycle through an immersed heat exchanger. The cycle power output will be used to supplement existing resources by providing electricity to various operating components on its own.The conversion of low and medium-temperature (< 150 °C) industrial or renewable (biomass, solar, geothermal) waste heat into electricity is a key challenge in energy efficiency. The organic Rankine cycle (ORC), which has been used on both laboratory and industrial scales for about ten years, is one potential method for capturing this heat.The nature of the hot source and the requirement for robustness and reliability in the system are two peculiarities related to the context of this work. In addition to the typical constraints imposed on this type of cycle, such as maximizing energy performance, respecting the environment, and minimizing space requirements.The purpose of the thesis was to investigate the behaviour of this complex system based on an ORC cycle using a methodology that combined modelling and experimentation, and thereby contribute to proving the validity of the selected approach. More specifically, an experimental test bench simulating the coupling between an ORC and a boiling water tank was dimensioned using a theoretical model. Thus, the satisfactory operation of the cycle and its adaptability to specific non-nominal conditions, such as an increase in the cold source temperature, the presence of liquid droplets at the turbine inlet, or the effects of a the working fluid charge in the ORC circuit, were both experimentally investigated. The ORC in the studied range have proven to be extremely reliable for a number of working fluids (Novec649TM, HFE7100) based on all of these off-design criteria. Architectural studies that were specifically focused on the coupling of ORC and water tank were also completed, with particular attention paid to the position of the evaporator immersed in the tank and the imposed power variation.All of these experimental findings aided the numerical simulations and theoretical models of the EES software. Finally, using these models allowed us to size the ORC on an industrial scale and make suggestions. These are specifically related to the ORC and condenser pool coupling architecture, as well as the multi-criteria analysis used to select the working fluid
Etude d'un cycle organique de Rankine couplé à un systÚme passif innovant : application aux réacteurs nucléaires avancés
This work contributes to the design of passive backup systems for pressurized water reactors (PWRs) in use today.The reactor core residual power is the heat produced by the fission products left over after the nuclear reaction in the core has stopped. Passive safety condensers are one method for eliminating this power by using a large amount of water placed very high up, allowing residual heat to be removed naturally through convection. This uses a large amount of water that takes a long time to heat up to boiling temperature.The fundamental concept is to use a portion of the energy contained in this volume of boiling water as a heat source for a thermodynamic cycle through an immersed heat exchanger. The cycle power output will be used to supplement existing resources by providing electricity to various operating components on its own.The conversion of low and medium-temperature (< 150 °C) industrial or renewable (biomass, solar, geothermal) waste heat into electricity is a key challenge in energy efficiency. The organic Rankine cycle (ORC), which has been used on both laboratory and industrial scales for about ten years, is one potential method for capturing this heat.The nature of the hot source and the requirement for robustness and reliability in the system are two peculiarities related to the context of this work. In addition to the typical constraints imposed on this type of cycle, such as maximizing energy performance, respecting the environment, and minimizing space requirements.The purpose of the thesis was to investigate the behaviour of this complex system based on an ORC cycle using a methodology that combined modelling and experimentation, and thereby contribute to proving the validity of the selected approach. More specifically, an experimental test bench simulating the coupling between an ORC and a boiling water tank was dimensioned using a theoretical model. Thus, the satisfactory operation of the cycle and its adaptability to specific non-nominal conditions, such as an increase in the cold source temperature, the presence of liquid droplets at the turbine inlet, or the effects of a the working fluid charge in the ORC circuit, were both experimentally investigated. The ORC in the studied range have proven to be extremely reliable for a number of working fluids (Novec649TM, HFE7100) based on all of these off-design criteria. Architectural studies that were specifically focused on the coupling of ORC and water tank were also completed, with particular attention paid to the position of the evaporator immersed in the tank and the imposed power variation.All of these experimental findings aided the numerical simulations and theoretical models of the EES software. Finally, using these models allowed us to size the ORC on an industrial scale and make suggestions. These are specifically related to the ORC and condenser pool coupling architecture, as well as the multi-criteria analysis used to select the working fluid.Ce travail sâinscrit dans le cadre de la mise au point de systĂšmes passifs dans lâarchitecture de systĂšmes de sauvegarde de rĂ©acteurs Ă eau pressurisĂ©s (REP) avancĂ©s.Lors de lâarrĂȘt de la rĂ©action nuclĂ©aire au sein du cĆur du rĂ©acteur, les produits de fission prĂ©sents dans le cĆur continuent de produire de la chaleur : il sâagit de la puissance rĂ©siduelle du cĆur du rĂ©acteur. Une solution pour Ă©vacuer cette puissance consiste Ă venir utiliser une grande quantitĂ© dâeau placĂ©e en hauteur, qui par convection naturelle, va permettre dâĂ©vacuer cette chaleur rĂ©siduelle : on parle de condenseurs passifs de sĂ»retĂ©. On dispose ainsi de volumes dâeau trĂšs importants qui sâĂ©chauffent jusquâĂ Ă©bullition et pendant une durĂ©e relativement longue.LâidĂ©e motrice est donc dâutiliser une partie de lâĂ©nergie stockĂ©e dans ce volume dâeau bouillante pour servir de source chaude Ă un cycle thermodynamique au travers dâun Ă©changeur de chaleur immergĂ©. La puissance produite par le cycle permettra dâalimenter en Ă©lectricitĂ© et de façon autonome divers organes utiles au fonctionnement, en complĂ©ment de moyens existants.Cette problĂ©matique rejoint un enjeu majeur de lâefficacitĂ© Ă©nergĂ©tique : celui de la valorisation de la chaleur fatale industrielle ou renouvelable (biomasse, solaire, gĂ©othermale) Ă faible et moyenne tempĂ©rature (<150âC) en Ă©lectricitĂ©. Une solution possible pour exploiter cette chaleur est lâutilisation dâun cycle de Rankine Ă fluide organique (ORC), systĂšme mis en Ćuvre tant Ă lâĂ©chelle du laboratoire quâĂ lâĂ©chelle industrielle depuis une dizaine dâannĂ©es.Deux singularitĂ©s liĂ©es au contexte de ce travail rĂ©sident dans la nature de la source chaude et dans lâexigence de fiabilitĂ© et de robustesse de ce systĂšme ; ces deux difficultĂ©s majeures sâajoutent aux contraintes habituellement demandĂ©es Ă ce type de cycle : maximisation de la performance Ă©nergĂ©tique, respect de lâenvironnement et minimisation de lâencombrement.L'objectif de la thĂšse a Ă©tĂ© d'Ă©tudier le comportement de ce systĂšme complexe basĂ© sur un cycle ORC, par une approche associant la modĂ©lisation et de l'expĂ©rimentation, et ainsi d'apporter une contribution Ă la dĂ©monstration de fiabilitĂ© de la solution retenue. De façon plus prĂ©cise, un modĂšle thĂ©orique a permis de dimensionner un banc dâessais expĂ©rimental reprĂ©sentant le couplage entre un ORC et une cuve dâeau bouillante. Ainsi a Ă©tĂ© Ă©tudiĂ©e expĂ©rimentalement le fonctionnement satisfaisant du cycle ainsi que son adaptabilitĂ© Ă certaines conditions hors nominales telles que lâaugmentation de la tempĂ©rature de source froide, la prĂ©sence de gouttelettes de liquide en entrĂ©e de la turbine ou encore les consĂ©quences dâune variation de la quantitĂ© de fluide de travail dans le circuit ORC. Lâensemble de ces critĂšres off-design ont dĂ©montrĂ© une fiabilitĂ© intĂ©ressante des ORC dans la gamme Ă©tudiĂ©e et ce, pour plusieurs fluides de travail (NOVEC649, HFE7100). Des Ă©tudes dâarchitecture propres au couplage ORC et cuve dâeau ont aussi Ă©tĂ© menĂ©es, notamment sur la position de lâĂ©vaporateur immergĂ© dans la cuve et sur la variation de puissance imposĂ©e.Lâensemble de ces rĂ©sultats expĂ©rimentaux ont permis de valider les modĂšles thĂ©oriques et les simulations numĂ©riques rĂ©alisĂ©es avec le logiciel EES. Ces modĂšles, ont enfin permis de rĂ©aliser un dimensionnement Ă lâĂ©chelle industrielle de lâORC ainsi que de proposer des recommandations. Celles-ci portent notamment sur le choix du fluide de travail au travers dâune analyse multicritĂšre et sur lâarchitecture du couplage ORC et piscine condenseur
Experimental results of an organic rankine cycle (ORC) associated to a passive heat removal system for advanced pressurized water reactors (PWR)
International audienceThis work concerns a specific passive system design for advanced pressurized water reactor (PWR). The studied system first relies on passive safety condensers, which are increasingly being used in the design of new generation nuclear power plants (NPP). These condensers are typically immersed in large water tanks that function as a cold source or heat sink. They have to be situated in a sufficient elevation enabling a two-phase natural circulation mode, with both a condensing phase of the steam extracted from the steam generator, and a gravity draining return for the condensates to the steam generator. Such power extraction can be used for a relatively long period of time depending on the pool size.The present research is based on the use of a portion of the energy stored in this boiling water volume as a hot source for a thermodynamic cycle via an immersed heat exchanger. The power generated by this cycle will be used as an autonomous supply for various critical components, in addition to existing systems. This technology used here which can convert electricity from low-grade heat is similar with existing technologies already used for the valorization of renewable (biomass, solar, geothermal) or industrial waste heat at low and medium temperature (<150°C) into electricity.An efficient technology is the organic Rankine cycle (ORC), which has been used at laboratory and industrial scales for about several decades. However, two major issues hamper the use of ORC in the context of PWR: the nature of the hot source (water at 100°C) and the requirement for system reliability and robustness. Aside from these two challenges, there are the usual constraints associated with this type of cycle: maximizing energy performance, using an environmentally friendly fluid, and minimizing space requirements.An experimental test bench with a boiling water pool and an ORC with immersed evaporator was built to address this problem. The design of the immersed evaporator is explained, as well as the correlations used. The system reliability is then studied through the investigation of off-nominal situations (degraded heat transfer at ORC evaporator, ''high'' temperature of ORC condenser) for a first approach of reliability assessment. This study gives first elements for the demonstration of the adaptability of a partial admission axial micro-turbine to the variation of cold source temperature and to the entry of two-phase fluid in Novec649TM. All the experimental results will be used to validate the theoretical model of the ORC (condenser - evaporator - turbine) in order to design the ORC at scale 1
Experimental results of an organic rankine cycle (ORC) associated to a passive heat removal system for advanced pressurized water reactors (PWR)
International audienceThis work concerns a specific passive system design for advanced pressurized water reactor (PWR). The studied system first relies on passive safety condensers, which are increasingly being used in the design of new generation nuclear power plants (NPP). These condensers are typically immersed in large water tanks that function as a cold source or heat sink. They have to be situated in a sufficient elevation enabling a two-phase natural circulation mode, with both a condensing phase of the steam extracted from the steam generator, and a gravity draining return for the condensates to the steam generator. Such power extraction can be used for a relatively long period of time depending on the pool size.The present research is based on the use of a portion of the energy stored in this boiling water volume as a hot source for a thermodynamic cycle via an immersed heat exchanger. The power generated by this cycle will be used as an autonomous supply for various critical components, in addition to existing systems. This technology used here which can convert electricity from low-grade heat is similar with existing technologies already used for the valorization of renewable (biomass, solar, geothermal) or industrial waste heat at low and medium temperature (<150°C) into electricity.An efficient technology is the organic Rankine cycle (ORC), which has been used at laboratory and industrial scales for about several decades. However, two major issues hamper the use of ORC in the context of PWR: the nature of the hot source (water at 100°C) and the requirement for system reliability and robustness. Aside from these two challenges, there are the usual constraints associated with this type of cycle: maximizing energy performance, using an environmentally friendly fluid, and minimizing space requirements.An experimental test bench with a boiling water pool and an ORC with immersed evaporator was built to address this problem. The design of the immersed evaporator is explained, as well as the correlations used. The system reliability is then studied through the investigation of off-nominal situations (degraded heat transfer at ORC evaporator, ''high'' temperature of ORC condenser) for a first approach of reliability assessment. This study gives first elements for the demonstration of the adaptability of a partial admission axial micro-turbine to the variation of cold source temperature and to the entry of two-phase fluid in Novec649TM. All the experimental results will be used to validate the theoretical model of the ORC (condenser - evaporator - turbine) in order to design the ORC at scale 1
ORC technology used in a Heat Removal System for Advanced Nuclear Power Plants
International audienceThis work concerns the design of a specific passive system for an advanced pressurized water reactor (PWR). The system studied is based firstly on passive safety condensers, which are increasingly used in the design of advanced nuclear power plants. These condensers are typically immersed in large water tanks that serve as a heat sink. They are located at a sufficient height to ensure a natural two-phase circulation mode. Such a heat removal system can be used for a relatively long period depending on the size of the tank.The present research is based on using a fraction of the energy stored in this volume of boiling water as a heat source for an organic Rankine cycle via an immersed heat exchanger. The electrical energy produced will power various critical components, complementing existing systems. Three unusual issues challenge the use of an ORC in this context: the nature of the hot source (boiling pool water), the low temperature of the hot source (100°C), and the requirement for system reliability and robustness. Apart from these three challenges, the usual constraints associated with ORC systems still exist: maximizing energy performance, using an environmentally friendly fluid and minimizing space requirements.An experimental test bench with a boiling water pool and an ORC with submerged evaporator was built to address the main questions. The first set of results shows the nominal operation of the coupling between the boiling water pool and the ORC when Novec649TM is used as working fluid. The reliability of the system is then studied through the investigation of the immersed evaporator and the implementation of a theoretical model. The theoretical model of the system will be used to scale the system
A Recent Advance on Partial Evaporating Organic Rankine Cycle: Experimental Results on an Axial Turbine
The organic Rankine cycle (ORC) technology is an efficient way to convert low-grade heat from renewable sources or waste heat for power generation. The partial evaporating organic Rankine cycle (PEORC) can be considered as a promising alternative as it can offer a higher utilization of the heat source. An experimental investigation of a small ORC system used in full or partial evaporation mode is performed. First characterized in superheated mode, which corresponds to standard ORC behavior, a semi-empirical correlative approach involving traditional non-dimensional turbomachinery parameters (specific speed, pressure ratio) can accurately describe one-phase turbine performance. In a second step, two-phase behavior is experimentally investigated. The efficiency loss caused by the two-phase inlet condition is quantified and considered acceptable. The turbine two-phase operation allows for an increase in the amount of recovered heat source. The ability to operate in two phases provides a new degree of flexibility when designing a PEORC. The semi-empirical correlative approach is then completed to take into account the partially evaporated turbine inlet condition. The qualitative description and the quantitative correlations in the one-phase and two-phase modes were applied to different pure working fluids (Novec649TM, HFE7000 and HFE7100) as well as to a zeotropic mixture (Novec649TM/HFE7000)