2,199 research outputs found

    Patient-reported symptomatology and its course in spontaneous intracranial hypotension - Beware of a chameleon.

    Get PDF
    OBJECTIVE Although orthostatic headache is the hallmark symptom of spontaneous intracranial hypotension (SIH), patients can present with a wide range of different complaints and thereby pose a diagnostic challenge for clinicians. Our aim was to describe and group the different symptoms associated with SIH and their course over time. METHODS We retrospectively surveyed consecutive patients diagnosed and treated for SIH at our institution from January 2013 to May 2020 with a specifically designed questionnaire to find out about their symptomatology and its course. RESULTS Of 112 eligible patients, 79 (70.5%) returned the questionnaire and were included in the analysis. Of those, 67 (84.8%) reported initial orthostatic headaches, whereas 12 (15.2%) denied having this initial symptom. All except one (98.7%) patients reported additional symptoms: most frequently cephalic pressure (69.6%), neck pain (68.4%), auditory disturbances (59.5%), nausea (57%), visual disturbances (40.5%), gait disturbance (20.3%), confusion (10.1%) or sensorimotor deficits (21.5%). Fifty-seven (72.2%) patients reported a development of the initial symptoms predominantly in the first three months after symptom onset. Age and sex were not associated with the symptomatology or its course (p > 0.1). CONCLUSION Although characteristic of SIH, a relevant amount of patients present without orthostatic headaches. In addition, SIH can manifest with non-orthostatic headaches at disease onset or during the course of the disease. Most patients report a wide range of associated complaints. A high degree of suspicion is crucial for an early diagnosis and targeted treatment

    Epidural Blood Patching in Spontaneous Intracranial Hypotension-Do we Really Seal the Leak?

    Get PDF
    PURPOSE Epidural blood patch (EBP) is a minimally invasive treatment for spontaneous intracranial hypotension (SIH). Follow-up after EBP primarily relies on clinical presentation and data demonstrating successful sealing of the underlying spinal cerebrospinal fluid (CSF) leak are lacking. Our aim was to evaluate the rate of successfully sealed spinal CSF leaks in SIH patients after non-targeted EBP. METHODS Patients with SIH and a confirmed spinal CSF leak who had been treated with non-targeted EBP were retrospectively analyzed. Primary outcome was persistence of CSF leak on spine MRI or intraoperatively. Secondary outcome was change in clinical symptoms after EBP. RESULTS In this study 51 SIH patients (mean age, 47 ± 13 years; 33/51, 65% female) treated with non-targeted EBP (mean, 1.3 EBPs per person; range, 1-4) were analyzed. Overall, 36/51 (71%) patients had a persistent spinal CSF leak after EBP on postinterventional imaging and/or intraoperatively. In a best-case scenario accounting for missing data, the success rate of sealing a spinal CSF leak with an EBP was 29%. Complete or substantial symptom improvement in the short term was reported in 45/51 (88%), and in the long term in 17/51 (33%) patients. CONCLUSION Non-targeted EBP is an effective symptomatic treatment providing short-term relief in a substantial number of SIH patients; however, successful sealing of the underlying spinal CSF leak by EBP is rare, which might explain the high rate of delayed symptom recurrence. The potentially irreversible and severe morbidity associated with long-standing intracranial hypotension supports permanent closure of the leak

    Updating Photon-Based Normal Tissue Complication Probability Models for Pneumonitis in Patients With Lung Cancer Treated With Proton Beam Therapy

    Get PDF
    Purpose: No validated models for predicting the risk of radiation pneumonitis (RP) with proton beam therapy (PBT) currently exist. Our goal was to externally validate and recalibrate multiple established photon-based normal tissue complication probability models for RP in a cohort with locally advanced nonsmall cell lung cancer treated with contemporary doses of chemoradiation using PBT. Methods and Materials: The external validation cohort consisted of 99 consecutive patients with locally advanced nonsmall cell lung cancer treated with chemoradiation using PBT. RP was retrospectively scored at 3 and 6 months posttreatment. We evaluated the performance of the photon Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) pneumonitis model, the QUANTEC model adjusted for clinical risk factors, and the newer Netherlands updated QUANTEC model. A closed testing procedure was performed to test the need for model updating, either by recalibration-in-the-large (re-estimation of intercept), recalibration (re-estimation of intercept/slope), or model revision (re-estimation of all coefficients). Results: There were 21 events (21%) of ≥grade 2 RP. The closed testing procedure on the PBT data set did not detect major deviations between the models and the data and recommended adjustment of the intercept only for the photon-based Netherlands updated QUANTEC model (intercept update: –1.2). However, an update of the slope and revision of the model coefficients were not recommended by the closed testing procedure, as the deviations were not significant within the power of the data. Conclusions: The similarity between the dose-response relationship for PBT and photons for normal tissue complications has been an assumption until now. We demonstrate that the preexisting, widely used photon based models fit our PBT data well with minor modifications. These now-validated and updated normal tissue complication probability models can aid in individualizing selection of the most optimal treatment technique for a particular patient

    Accelerated functional brain aging in pre-clinical familial Alzheimer's disease

    Get PDF
    Alzheimer's disease has been associated with increased structural brain aging. Here the authors describe a model that predicts brain aging from resting state functional connectivity data, and demonstrate this is accelerated in individuals with pre-clinical familial Alzheimer's disease. Resting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer's disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (A beta) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18-94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant A beta pathology

    Markers of early changes in cognition across cohorts of adults with Down syndrome at risk of Alzheimer's disease.

    Get PDF
    IntroductionDown syndrome (DS), a genetic variant of early onset Alzheimer's disease (AD), lacks a suitable outcome measure for prevention trials targeting pre-dementia stages.MethodsWe used cognitive test data collected in several longitudinal aging studies internationally from 312 participants with DS without dementia to identify composites that were sensitive to change over time. We then conducted additional analyses to provide support for the utility of the composites. The composites were presented to an expert panel to determine the most optimal cognitive battery based on predetermined criteria.ResultsThere were common cognitive domains across site composites, which were sensitive to early decline. The final composite consisted of memory, language/executive functioning, selective attention, orientation, and praxis tests.DiscussionWe have identified a composite that is sensitive to early decline and thus may have utility as an outcome measure in trials to prevent or delay symptoms of AD in DS

    Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease

    Get PDF
    Neurofilament light chain (NfL) is a promising fluid biomarker of disease progression for various cerebral proteopathies. Here we leverage the unique characteristics of the Dominantly Inherited Alzheimer Network and ultrasensitive immunoassay technology to demonstrate that NfL levels in the cerebrospinal fluid (n = 187) and serum (n = 405) are correlated with one another and are elevated at the presymptomatic stages of familial Alzheimer's disease. Longitudinal, within-person analysis of serum NfL dynamics (n = 196) confirmed this elevation and further revealed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels (that is, 16.2 versus 6.8 years before the estimated symptom onset). Serum NfL rate of change peaked in participants converting from the presymptomatic to the symptomatic stage and was associated with cortical thinning assessed by magnetic resonance imaging, but less so with amyloid-β deposition or glucose metabolism (assessed by positron emission tomography). Serum NfL was predictive for both the rate of cortical thinning and cognitive changes assessed by the Mini-Mental State Examination and Logical Memory test. Thus, NfL dynamics in serum predict disease progression and brain neurodegeneration at the early presymptomatic stages of familial Alzheimer's disease, which supports its potential utility as a clinically useful biomarker

    Multivariate Analysis of F-18-DMFP PET Data to Assist the Diagnosis of Parkinsonism

    Get PDF
    An early and differential diagnosis of parkinsonian syndromes still remains a challenge mainly due to the similarity of their symptoms during the onset of the disease. Recently, F-18-Desmethoxyfallypride (DMFP) has been suggested to increase the diagnostic precision as it is an effective radioligand that allows us to analyze post-synaptic dopamine D2/3 receptors. Nevertheless, the analysis of these data is still poorly covered and its use limited. In order to address this challenge, this paper shows a novel model to automatically distinguish idiopathic parkinsonism from non-idiopathic variants using DMFP data. The proposed method is based on a multiple kernel support vector machine and uses the linear version of this classifier to identify some regions of interest: the olfactory bulb, thalamus, and supplementary motor area. We evaluated the proposed model for both, the binary separation of idiopathic and non-idiopathic parkinsonism and the multigroup separation of parkinsonian variants. These systems achieved accuracy rates higher than 70%, outperforming DaTSCAN neuroimages for this purpose. In addition, a system that combined DaTSCAN and DMFP data was assessed

    BDNF Val66Met moderates memory impairment, hippocampal function and tau in preclinical autosomal dominant Alzheimer’s disease

    Get PDF
    The brain-derived neurotrophic factor ( BDNF ) Val66Met polymorphism is implicated in synaptic excitation and neuronal integrity, and has previously been shown to moderate amyloid-β-related memory decline and hippocampal atrophy in preclinical sporadic Alzheimer’s disease. However, the effect of BDNF in autosomal dominant Alzheimer’s disease is unknown. We aimed to determine the effect of BDNF Val66Met on cognitive function, hippocampal function, tau and amyloid-β in preclinical autosomal dominant Alzheimer’s disease. We explored effects of apolipoprotein E ( APOE ) ε4 on these relationships. The Dominantly Inherited Alzheimer Network conducted clinical, neuropsychological, genetic, biomarker and neuroimaging measures at baseline in 131 mutation non-carriers and 143 preclinical autosomal dominant Alzheimer’s disease mutation carriers on average 12 years before clinical symptom onset. BDNF genotype data were obtained for mutation carriers (95 Val 66 homozygotes, 48 Met 66 carriers). Among preclinical mutation carriers, Met 66 carriers had worse memory performance, lower hippocampal glucose metabolism and increased levels of cerebrospinal fluid tau and phosphorylated tau (p-tau) than Val 66 homozygotes. Cortical amyloid-β and cerebrospinal fluid amyloid-β 42 levels were significantly different from non-carriers but did not differ between preclinical mutation carrier Val 66 homozygotes and Met 66 carriers. There was an effect of APOE on amyloid-β levels, but not cognitive function, glucose metabolism or tau. As in sporadic Alzheimer’s disease, the deleterious effects of amyloid-β on memory, hippocampal function, and tau in preclinical autosomal dominant Alzheimer’s disease mutation carriers are greater in Met 66 carriers. To date, this is the only genetic factor found to moderate downstream effects of amyloid-β in autosomal dominant Alzheimer’s disease
    corecore