46 research outputs found

    Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells.</p> <p>Methods</p> <p>Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR.</p> <p>Results</p> <p>SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr<sup>701</sup>-phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation.</p> <p>Conclusions</p> <p>These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ.</p

    The helicase HAGE prevents interferon-a-induced PML expression in ABCB5+ malignant melanoma-initiating cells by promoting the expression of SOCS1

    Get PDF
    The tumour suppressor PML (promyelocytic leukaemia protein) regulates several cellular pathways involving cell growth, apoptosis, differentiation and senescence. PML also has an important role in the regulation of stem cell proliferation and differentiation. Here, we show the involvement of the helicase HAGE in the transcriptional repression of PML expression in ABCB5 + malignant melanoma-initiating cells (ABCB5 + MMICs), a population of cancer stem cells which are responsible for melanoma growth, progression and resistance to drug-based therapy. HAGE prevents PML gene expression by inhibiting the activation of the JAK-STAT (janus kinase-signal transducers and activators of transcription) pathway in a mechanism which implicates the suppressor of cytokine signalling 1 (SOCS1). Knockdown of HAGE led to a significant decrease in SOCS1 protein expression, activation of the JAK-STAT signalling cascade and a consequent increase of PML expression. To confirm that the reduction in SOCS1 expression was dependent on the HAGE helicase activity, we showed that SOCS1, effectively silenced by small interfering RNA, could be rescued by re-introduction of HAGE into cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes SOCS1 mRNA unwinding and protein expression in vitro

    Intact interferon signaling in peripheral blood leukocytes of high-grade osteosarcoma patients

    Get PDF
    High-grade osteosarcoma has a poor prognosis with an overall survival rate of about 60 percent. The recently closed European and American Osteosarcoma Study Group (EURAMOS)-1 trial investigates the efficacy of adjuvant chemotherapy with or without interferon-α. It is however unknown whether the interferon-signaling pathways in immune cells of osteosarcoma patients are functional. We studied the molecular and functional effects of interferon treatment on peripheral blood lymphocytes and monocytes of osteosarcoma patients, both in vivo and ex vivo. In contrast to other tumor types, in osteosarcoma, interferon signaling as determined by the phosphorylation of signal transducer and activator of transcription (STAT)1 at residue 701 was intact in immune cell subsets of 33 osteosarcoma patients as compared to 19 healthy controls. Also, cytolytic activity of interferon-α stimulated natural killer cells against allogeneic (n = 7 patients) and autologous target cells (n = 3 patients) was not impaired. Longitudinal monitoring of three osteosarcoma patients on interferon-α monotherapy revealed a relative increase in the CD16-positive subpopulation of monocytes during treatment. Since interferon signaling is intact in immune cells of osteosarcoma patients, there is a potential for indirect immunological effects of interferon-α treatment in osteosarcoma

    Phage Displayed Peptides to Avian H5N1 Virus Distinguished the Virus from Other Viruses

    Get PDF
    The purpose of the current study was to identify potential ligands and develop a novel diagnostic test to highly pathogenic avian influenza A virus (HPAI), subtype H5N1 viruses using phage display technology. The H5N1 viruses were used as an immobilized target in a biopanning process using a 12-mer phage display random peptide library. After five rounds of panning, three phages expressing peptides HAWDPIPARDPF, AAWHLIVALAPN or ATSHLHVRLPSK had a specific binding activity to H5N1 viruses were isolated. Putative binding motifs to H5N1 viruses were identified by DNA sequencing. In terms of the minimum quantity of viruses, the phage-based ELISA was better than antiserum-based ELISA and a manual, semi-quantitative endpoint RT-PCR for detecting H5N1 viruses. More importantly, the selected phages bearing the specific peptides to H5N1 viruses were capable of differentiating this virus from other avian viruses in enzyme-linked immunosorbent assays

    Phage Displayed Short Peptides against Cells of Candida albicans Demonstrate Presence of Species, Morphology and Region Specific Carbohydrate Epitopes

    Get PDF
    Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time

    Mimotopes selected with neutralizing antibodies against multiple subtypes of influenza A

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mimotopes of viruses are considered as the good targets for vaccine design. We prepared mimotopes against multiple subtypes of influenza A and evaluate their immune responses in flu virus challenged Balb/c mice.</p> <p>Methods</p> <p>The mimotopes of influenza A including pandemic H1N1, H3N2, H2N2 and H1N1 swine-origin influenza virus were screened by peptide phage display libraries, respectively. These mimotopes were engineered in one protein as multi- epitopes in Escherichia coli (E. coli) and purified. Balb/c mice were immunized using the multi-mimotopes protein and specific antibody responses were analyzed using hemagglutination inhibition (HI) assay and enzyme-linked immunosorbent assay (ELISA). The lung inflammation level was evaluated by hematoxylin and eosin (HE).</p> <p>Results</p> <p>Linear heptopeptide and dodecapeptide mimotopes were obtained for these influenza virus. The recombinant multi-mimotopes protein was a 73 kDa fusion protein. Comparing immunized infected groups with unimmunized infected subsets, significant differences were observed in the body weight loss and survival rate. The antiserum contained higher HI Ab titer against H1N1 virus and the lung inflammation level were significantly decreased in immunized infected groups.</p> <p>Conclusions</p> <p>Phage-displayed mimotopes against multiple subtypes of influenza A were accessible to the mouse immune system and triggered a humoral response to above virus.</p

    Mimotopes selected with a neutralizing antibody against urease B from Helicobacter pylori induce enzyme inhibitory antibodies in mice upon vaccination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urease B is an important virulence factor that is required for <it>Helicobacter pylori </it>to colonise the gastric mucosa. Mouse monoclonal antibodies (mAbs) that inhibit urease B enzymatic activity will be useful as vaccines for the prevention and treatment of <it>H. pylori </it>infection. Here, we produced murine mAbs against urease B that neutralize the enzyme's activity. We mapped their epitopes by phage display libraries and investigated the immunogenicity of the selected mimotopes <it>in vivo</it>.</p> <p>Results</p> <p>The urease B gene was obtained (GenBank accession No. <ext-link ext-link-id="DQ141576" ext-link-type="gen">DQ141576</ext-link>) and the recombinant pGEX-4T-1/UreaseB protein was expressed in <it>Escherichia coli </it>as a 92-kDa recombinant fusion protein with glutathione-S-transferase (GST). Five mAbs U001-U005 were produced by a hybridoma-based technique with urease B-GST as an immunogen. Only U001 could inhibit urease B enzymatic activity. Immunoscreening via phage display libraries revealed two different mimotopes of urease B protein; EXXXHDM from ph.D.12-library and EXXXHSM from ph.D.C7C that matched the urease B proteins at 347-353 aa. The antiserum induced by selected phage clones clearly recognised the urease B protein and inhibited its enzymatic activity, which indicated that the phagotope-induced immune responses were antigen specific.</p> <p>Conclusions</p> <p>The present work demonstrated that phage-displayed mimotopes were accessible to the mouse immune system and triggered a humoral response. The urease B mimotope could provide a novel and promising approach for the development of a vaccine for the diagnosis and treatment of <it>H. pylori </it>infection.</p

    A distinct role for B1b lymphocytes in T cell-independent immunity

    Get PDF
    Pathogenesis of infectious disease is not only determined by the virulence of the microbe but also by the immune status of the host. Vaccination is the most effective means to control infectious diseases. A hallmark of the adaptive immune system is the generation of B cell memory, which provides a long-lasting protective antibody response that is central to the concept of vaccination. Recent studies revealed a distinct function for B1b lymphocytes, a minor subset of mature B cells that closely resembles that of memory B cells in a number of aspects. In contrast to the development of conventional B cell memory, which requires the formation of germinal centers and T cells, the development of B1b cell-mediated long-lasting antibody responses occurs independent of T cell help. T cell-independent (TI) antigens are important virulence factors expressed by a number of bacterial pathogens, including those associated with biological threats. TI antigens cannot be processed and presented to T cells and therefore are known to possess restricted T cell-dependent (TD) immunogenicity. Nevertheless, specific recognition of TI antigens by B1b cells and the highly protective antibody responses mounted by them clearly indicate a crucial role for this subset of B cells. Understanding the mechanisms of long-term immunity conferred by B1b cells may lead to improved vaccine efficacy for a variety of TI antigens
    corecore