37 research outputs found

    Nonlinear characteristics and stability optimization of rotor-seal-bearing system

    Get PDF
    A nonlinear rotor-seal-bearing system model, including the Muszynska nonlinear seal force model and nonlinear oil-film force model based on short bearing assumption, is proposed in this paper. The non-dimensional dynamic motion equations of the system are also established and solved by fourth order Runge-kutta method. The nonlinear dynamic characteristics of the system are analyzed with the help of bifurcation diagrams, spectrum waterfall diagrams, axis orbit diagrams, Poincaré maps and amplitude spectrums. The effect of rotor speed, seal clearance, seal length and seal radius on the nonlinear characteristics of the system is also explored. The genetic algorithm (GA) is applied to optimize the stability of the system. The numerical results demonstrate that the rotor-seal-bearing system contains many motion forms, such as periodic, multi-periodic and quasi-periodic motions. Lower rotor speed, proper seal clearance and seal radius, larger seal length are of benefit to the stability of rotor-seal-bearing system. The minimum instability rotor speed changing from 1970 rad/s to 2110 rad/s indicates the GA is an effective optimization method of improving the stability of rotor-seal-bearing system

    The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of the bZip transcription factor, ATF3, in basal epithelial cells of transgenic mice under the control of the bovine cytokeratin-5 (CK5) promoter has previously been shown to induce epidermal hyperplasia, hair follicle anomalies and neoplastic lesions of the oral mucosa including squamous cell carcinomas. CK5 is known to be expressed in myoepithelial cells of the mammary gland, suggesting the possibility that transgenic BK5.ATF3 mice may exhibit mammary gland phenotypes.</p> <p>Methods</p> <p>Mammary glands from nulliparous mice in our BK5.ATF3 colony, both non-transgenic and transgenic, were examined for anomalies by histopathology and immunohistochemistry. Nulliparous and biparous female mice were observed for possible mammary tumor development, and suspicious masses were analyzed by histopathology and immunohistochemistry. Human breast tumor samples, as well as normal breast tissue, were similarly analyzed for ATF3 expression.</p> <p>Results</p> <p>Transgenic BK5.ATF3 mice expressed nuclear ATF3 in the basal layer of the mammary ductal epithelium, and often developed squamous metaplastic lesions in one or more mammary glands by 25 weeks of age. No progression to malignancy was seen in nulliparous BK5.ATF3 or non-transgenic mice held for 16 months. However, biparous BK5.ATF3 mice developed mammary carcinomas with squamous metaplasia between 6 months and one year of age, reaching an incidence of 67%. Cytokeratin expression in the tumors was profoundly disturbed, including expression of CK5 and CK8 (characteristic of basal and luminal cells, respectively) throughout the epithelial component of the tumors, CK6 (potentially a stem cell marker), CK10 (a marker of interfollicular epidermal differentiation), and mIRSa2 and mIRSa3.1 (markers of the inner root sheath of hair follicles). Immunohistochemical studies indicated that a subset of human breast tumors exhibit high levels of nuclear ATF3 expression.</p> <p>Conclusion</p> <p>Overexpression of ATF3 in CK5-expressing cells of the murine mammary gland results in the development of squamous metaplastic lesions in nulliparous females, and in mammary tumors in biparous mice, suggesting that ATF3 acts as a mammary oncogene. A subset of human breast tumors expresses high levels of ATF3, suggesting that ATF3 may play an oncogenic role in human breast tumorigenesis, and therefore may be useful as either a biomarker or therapeutic target.</p

    Activation of the Canonical Wnt/β-Catenin Pathway in ATF3-Induced Mammary Tumors

    Get PDF
    Female transgenic mice that constitutively overexpress the transcription factor ATF3 in the basal epithelium of the mammary gland develop mammary carcinomas with high frequency, but only if allowed to mate and raise pups early in life. This transgenic mouse model system reproduces some features of human breast cancer in that about 20% of human breast tumor specimens exhibit overexpression of ATF3 in the tumor cells. The ATF3-induced mouse tumors are phenotypically similar to mammary tumors induced by overexpression of activating Wnt/β-catenin pathway genes. We now show that the Wnt/β-catenin pathway is indeed activated in ATF3-induced tumors. β-catenin is transcriptionally up-regulated in the tumors, and high levels of nuclear β-catenin are seen in tumor cells. A reporter gene for Wnt/β-catenin pathway activity, TOPGAL, is up-regulated in the tumors and several downstream targets of Wnt signaling, including Ccnd1, Jun, Axin2 and Dkk4, are also expressed at higher levels in ATF3-induced tumors compared to mammary glands of transgenic females. Several positive-acting ligands for this pathway, including Wnt3, Wnt3a, Wnt7b, and Wnt5a, are significantly overexpressed in tumor tissue, and mRNA for Wnt3 is about 5-fold more abundant in transgenic mammary tissue than in non-transgenic mammary tissue. Two known transcriptional targets of ATF3, Snai1 and Snai2, are also overexpressed in the tumors, and Snail and Slug proteins are found to be located primarily in the nuclei of tumor cells. In vitro knockdown of Atf3 expression results in significant decreases in expression of Wnt7b, Tcf7, Snai2 and Jun, suggesting that these genes may be direct transcriptional targets of ATF3 protein. By chromatin immunoprecipitation analysis, both ATF3 and JUN proteins appear to bind to a particular subclass of AP-1 sites upstream of the transcriptional start sites of each of these genes

    Zhifeng Li Numerical Simulation of the Transient Flow in a Centrifugal Pump During Starting Period

    No full text
    Computational fluid dynamics were used to study the three-dimensional unsteady incompressible viscou

    Instability Analysis of a Model Pump-Turbine with MGV Based on Nonlinear Partially Averaged Navier-Stokes Methods

    No full text
    Pump-turbines were always running at partial condition with the power grid changing. Flow separations and stall phenomena were obvious in the pump-turbine. Most of the RANS turbulence models solved the shear stress by linear difference scheme and isotropic models, so they could not capture all kinds of vortexes in the pump-turbine well. At present, partially-averaged Navier-Stokes (PANS) model has been found to be better than LES in simulating flow regions especially those with less discretized grid. In this paper, a new nonlinear PANS turbulence model was proposed, which was modified from RNG k -ε turbulence model and the shear stresses were solved by Ehrhardt's nonlinear methods. The nonlinear PANS model was used to study the instability of “S” region of a model pump-turbine with misaligned guide vanes (MGV). The opening of preopened guide vanes had great influence on the “S” characteristics. The optimal relative opening of the preopened guide vanes was 50% for the improvement of the “S” characteristics. Pressure fluctuations in the vaneless space were analyzed. It is found that the dominant frequency at the vaneless space was twice the blade passing frequency, while the second dominant frequency decreased as the preopening increased

    Data from: A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    No full text
    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method - twofold secant method, for determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by finite difference method and the inner pressure is obtained by successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity were also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length

    Fluid-Structure Interaction Analysis on Turbulent Annular Seals of Centrifugal Pumps during Transient Process

    Get PDF
    The current paper studies the influence of annular seal flow on the transient response of centrifugal pump rotors during the start-up period. A single rotor system and three states of annular seal flow were modeled. These models were solved using numerical integration and finite difference methods. A fluid-structure interaction method was developed. In each time step one of the three annular seal models was chosen to simulate the annular seal flow according to the state of rotor systems. The objective was to obtain a transient response of rotor systems under the influence of fluid-induced forces generated by annular seal flow. This method overcomes some shortcomings of the traditional FSI method by improving the data transfer process between two domains. Calculated results were in good agreement with the experimental results. The annular seal was shown to have a supportive effect on rotor systems. Furthermore, decreasing the seal clearance would enhance this supportive effect. In the transient process, vibration amplitude and critical speed largely changed when the acceleration of the rotor system increased

    Ni/WS<sub>2</sub>/WC Composite Nanosheets as an Efficient Catalyst for Photoelectrochemical Hydrogen Peroxide Sensing and Hydrogen Evolution

    No full text
    It is highly attractive to develop a photoelectrochemical (PEC) sensing platform based on a non-noble-metal nano array architecture. In this paper, a PEC hydrogen peroxide (H2O2) biosensor based on Ni/WS2/WC heterostructures was synthesized by a facile hydrothermal synthesis method and melamine carbonization process. The morphology, structural and composition and light absorption properties of the Ni/WS2/WC catalyst were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–visible spectrophotometer. The average size of the Ni/WS2/WC nanosheets was about 200 nm. Additionally, the electrochemical properties toward H2O2 were studied using an electrochemical workstation. Benefiting from the Ni and C atoms, the optimized Ni/WS2/WC catalyst showed superior H2O2 sensing performance and a large photocurrent response. It was found that the detection sensitivity of the Ni/WS2/WC catalyst was 25.7 μA/cm2/mM, and the detection limit was 0.3 mmol/L in the linear range of 1−10 mM. Simultaneously, the synthesized Ni/WS2/WC electrode displayed excellent electrocatalytic properties in hydrogen evolution reaction (HER), with a relatively small overpotential of 126 mV at 10 mA/cm2 in 0.5 M H2SO4. This novel Ni/WS2/WC electrode may provide new insights into preparing other efficient hybrid photoelectrodes for PEC applications
    corecore