5 research outputs found
Tropical Cyclone Diurnal Cycle as Observed by TRMM
Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due to frictional convergence) may disrupt the natural convective cycle of a cyclone. Hence, only data pertaining to storms whose centers were greater than 300 km from land were included in the composites. Early results suggest the presence of a diurnal cycle in the PR composites of all Atlantic basin tropical cyclones from a height of 2-12 km from approximately 0-400 km radius, but the cycle is most apparent above 6 km. At a height of 8 km, there is a peak (minimum) in the percentage of PR pixels greater than or equal to 20 dBZ near 0 (21) LST in the inner core with some indication that this signal propagates outward with time. In contrast, the 37- and 85-GHz composites show little indication of a diurnal cycle at any radii, regardless of the threshold used. Ongoing work with this project will involve sub-setting the composites according to storm intensity to see if the diurnal cycle varies with storm strength. Moderate to strong vertical wind shear often leads to asymmetries in tropical cyclone convection and may disrupt the cyclone's natural diurnal cycle. Therefore, wind shear thresholds will be applied to the composites to determine if the diurnal cycle becomes more apparent in a low shear environment. Finally, other work to be completed will involve developing composites for other tropical cyclone basins, including the East Pacific, Northwest Pacific, South Pacific, and Indian Ocean
Lightning Observations and Tropical Cyclogenesis in the Atlantic and East Pacific
It has been hypothesized that deep, intense convective-scale "hot" towers may aid the process of tropical cyclogenesis and intensification through dynamic and thermodynamic feedbacks on the larger meso-to-synoptic scale circulation. In this study, we make use of NCEP Reanalysis data and Tropical Rainfall Measurement Mission (TRMM) lightning imaging sensor (LIS), precipitation radar (PR), and microwave imager (TMI) data to investigate the role that widespread and/or intense lightning-producing convection (i.e., "electrically-hot towers") present in African easterly waves (AEWs) may play in tropical cyclogenesis over the Atlantic, Caribbean, and East Pacific regions. NCEP Reanalysis 700 hPa meridional winds for the months of June to November for the years 2001-2009 were analyzed for the domain of 5degN-20degN and 130degW-20degE in order to partition individual AEWs into northerly, southerly, trough, and ridge phases. Subsequently, information from National Hurricane Center (NHC) storm reports was used to divide the waves into developing and non-developing waves. In addition, information from the NHC reports was used to further divide the developing waves into those waves that spawned storms that only developed to tropical storm strength and those that spawned storms that reached hurricane strength. The developing waves were also divided by the region in which they developed. To assess the evolution of convection associated with the AEWs as they propagated across our analysis domain, the full 130degW-20degE domain was divided into five longitude bands, and waves were analyzed for each band. To help determine the gross nature of the smaller convective scale, composites were created of all developing and non-developing waves as a function of AEW wave phase over the full analysis domain and each longitude band by compositing TRMM PR, TMI, LIS, and IR brightness temperature data extracted from the NASA global-merged infrared brightness temperature dataset. Finally, similar composites were created using various NCEP variables to assess the nature of the larger scale environment and circulation
Electrically-Active Convection and Tropical Cyclogenesis in the Atlantic and East Pacific
It has been hypothesized that deep, intense convective-scale "hot" towers may aid the process of tropical cyclogenesis and intensification through dynamic and thermodynamic feedbacks on the larger meso-to-synoptic scale circulation. In this study, we make use of NCEP Reanalysis data and Tropical Rainfall Measurement Mission (TRMM) lightning imaging sensor (LIS), precipitation radar (PR), and microwave imager (TMI) data to investigate the role that widespread and/or intense lightning-producing convection (i.e., "electrically-hot towers") present in African easterly waves (AEWs) may play in tropical cyclogenesis over the Atlantic, Caribbean, and East Pacific regions. NCEP Reanalysis 700 hPa meridional winds for the months of June to November for the years 2001-2009 were analyzed for the domain of 5degN-20degN and 130degW-20degE in order to partition individual AEWs into northerly, southerly, trough, and ridge phases. Subsequently, information from National Hurricane Center (NHC) storm reports was used to divide the waves into developing and non-developing waves and to further divide the developing waves into those waves that spawned storms that only developed to tropical storm strength and those that spawned storms that reached hurricane strength. The developing waves were also divided by the region in which they developed. To help determine the gross nature of the smaller convective scale, composites were created of all developing and non-developing waves as a function of AEW wave phase over the full analysis domain and over various smaller longitude bands by compositing TRMM PR, TMI, LIS, and IR brightness temperature data extracted from the NASA global-merged IR brightness temperature dataset. Finally, similar composites were created using various NCEP variables to assess the nature of the larger scale environment and circulation. Results suggest a clear distinction between developing and non-developing waves as developing waves near their region of development in terms of the intensity of convection (indicated by lightning flash rate), coverage of cold cloudiness (indicated by the percentage of a 2.5deg by 2.5deg box covered by IR brightness temperatures less than 210 K), and large-scale variables, such as midlevel moisture and upper-level upward motion. For example, waves that developed in the East Pacific longitude band (i.e., 130degW-95degW) were observed in that band to have a flash rate of 56.4 flashes/day, a coverage by brightness temperatures less than 210 K equal to 2.2%, a 700-hPa specific humidity anomaly of 0.4 g/kg, and a 300-hPa omega value of -0.04 Pascals/s in the trough phase compared to the non-developing wave trough values of 22.1 flashes/day, a coverage by brightness temperatures less than 210 K equal to 0.9%, a 700-hPa specific humidity anomaly of -0.3 g/kg, and a 300-hPa omega value of -0.01 Pascals/s
Electrically-Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific
In this study, we investigate the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and East Pacific using data from the Tropical Rainfall Measurement Mission Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the NCEP-NCAR reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using the various datasets. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that developed a cyclone in the Atlantic basin, coverage by IR brightness temperatures .240 K and .210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the East Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting