77 research outputs found

    Molecular Basis of Mismatch Repair Protein Deficiency in Tumors from Lynch Suspected Cases with Negative Germline Test Results

    Get PDF
    Some 10–50% of Lynch-suspected cases with abnormal immunohistochemical (IHC) staining remain without any identifiable germline mutation of DNA mismatch repair (MMR) genes. MMR proteins form heterodimeric complexes, giving rise to distinct IHC patterns when mutant. Potential reasons for not finding a germline mutation include involvement of an MMR gene not predicted by the IHC pattern, epigenetic mechanism of predisposition, primary mutation in another DNA repair or replication-associated gene, and double somatic MMR gene mutations. We addressed these possibilities by germline and tumor studies in 60 Lynch-suspected cases ascertained through diagnostics (n = 55) or research (n = 5). All cases had abnormal MMR protein staining in tumors but no point mutation or large rearrangement of the suspected MMR genes in the germline. In diagnostic practice, MSH2/MSH6 (MutS Homolog 2/MutS Homolog 6) deficiency prompts MSH2 mutation screening; in our study, 3/11 index individuals (27%) with this IHC pattern revealed pathogenic germline mutations in MSH6. Individuals with isolated absence of MSH6 are routinely screened for MSH6 mutations alone; we found a predisposing mutation in MSH2 in 1/7 such cases (14%). Somatic deletion of the MSH2-MSH6 region, joint loss of MSH6 and MSH3 (MutS Homolog 3) proteins, and hindered MSH2/MSH6 dimerization offered explanations to misleading IHC patterns. Constitutional epimutation hypothesis was pursued in the MSH2 and/or MSH6-deficient cases plus 38 cases with MLH1 (MutL Homolog 1)-deficient tumors; a primary MLH1 epimutation was identified in one case with an MLH1-deficient tumor. We conclude that both MSH2 and MSH6 should be screened in MSH2/6- and MSH6-deficient cases. In MLH1-deficient cases, constitutional epimutations of MLH1 warrant consideration

    Somatic mutation profiles as molecular classifiers of ulcerative colitis-associated colorectal cancer

    Get PDF
    Ulcerative colitis increases colorectal cancer risk by mechanisms that remain incompletely understood. We approached this question by determining the genetic and epigenetic profiles of colitis-associated colorectal carcinomas (CA-CRC). The findings were compared to Lynch syndrome (LS), a different form of cancer predisposition that shares the importance of immunological factors in tumorigenesis. CA-CRCs (n = 27) were investigated for microsatellite instability, CpG island methylator phenotype and somatic mutations of 999 cancer-relevant genes ("Pan-cancer" panel). A subpanel of "Pan-cancer" design (578 genes) was used for LS colorectal tumors (n = 28). Mutational loads and signatures stratified CA-CRCs into three subgroups: hypermutated microsatellite-unstable (Group 1, n = 1), hypermutated microsatellite-stable (Group 2, n = 9) and nonhypermutated microsatellite-stable (Group 3, n = 17). The Group 1 tumor was the only one with MLH1 promoter hypermethylation and exhibited the mismatch repair deficiency-associated Signatures 21 and 15. Signatures 30 and 32 characterized Group 2, whereas no prominent single signature existed in Group 3. TP53, the most common mutational target in CA-CRC (16/27, 59%), was similarly affected in Groups 2 and 3, but DNA repair genes and Wnt signaling genes were mutated significantly more often in Group 2. In LS tumors, the degree of hypermutability exceeded that of the hypermutated CA-CRC Groups 1 and 2, and somatic mutational profiles and signatures were different. In conclusion, Groups 1 (4%) and 3 (63%) comply with published studies, whereas Group 2 (33%) is novel. The existence of molecularly distinct subgroups within CA-CRC may guide clinical management, such as therapy options.Peer reviewe

    Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis

    Get PDF
    Immunological and epigenetic changes are interconnected and contribute to tumorigenesis. We determined the immunoprofiles and promoter methylation of inflammation-related genes for colitis-associated colorectal carcinomas (CA-CRC). The results were compared with Lynch syndrome (LS)-associated colorectal tumors, which are characterized by an active immune environment through inherited mismatch repair defects. CA-CRCs (n = 31) were immunohistochemically evaluated for immune cell scores (ICSs) and PDCD1 and CD274 expression. Seven inflammation-associated genes (CD274, NTSR1, PPARG, PTGS2, PYCARD, SOCS1, and SOCS2), the repair gene MGMT, and eight standard marker genes for the CpG Island Methylator Phenotype (CIMP) were investigated for promoter methylation in CA-CRCs, LS tumors (n = 29), and paired normal mucosae by multiplex ligation-dependent probe amplification. All but one CA-CRCs were microsatellite-stable and all LS tumors were microsatellite-unstable. Most CA-CRCs had a high ICS (55%) and a positive CD274 expression in immune cells (52%). NTSR1 revealed frequent tumor-specific hypermethylation in CA-CRC and LS. When compared to LS mucosae, normal mucosae from patients with CA-CRC showed significantly higher methylation of NTSR1 and most CIMP markers. In conclusion, CA-CRCs share a frequent ICShigh/CD274pos expression pattern with LS tumors. Elevated methylation in normal mucosa may indicate field cancerization as a feature of CA-CRC-associated tumorigenesis

    Immunoprofiles and DNA Methylation of Inflammatory Marker Genes in Ulcerative Colitis-Associated Colorectal Tumorigenesis

    Get PDF
    Immunological and epigenetic changes are interconnected and contribute to tumorigenesis. We determined the immunoprofiles and promoter methylation of inflammation-related genes for colitis-associated colorectal carcinomas (CA-CRC). The results were compared with Lynch syndrome (LS)-associated colorectal tumors, which are characterized by an active immune environment through inherited mismatch repair defects. CA-CRCs (n = 31) were immunohistochemically evaluated for immune cell scores (ICSs) and PDCD1 and CD274 expression. Seven inflammation-associated genes (CD274, NTSR1, PPARG, PTGS2, PYCARD, SOCS1, and SOCS2), the repair gene MGMT, and eight standard marker genes for the CpG Island Methylator Phenotype (CIMP) were investigated for promoter methylation in CA-CRCs, LS tumors (n = 29), and paired normal mucosae by multiplex ligation-dependent probe amplification. All but one CA-CRCs were microsatellite-stable and all LS tumors were microsatellite-unstable. Most CA-CRCs had a high ICS (55%) and a positive CD274 expression in immune cells (52%). NTSR1 revealed frequent tumor-specific hypermethylation in CA-CRC and LS. When compared to LS mucosae, normal mucosae from patients with CA-CRC showed significantly higher methylation of NTSR1 and most CIMP markers. In conclusion, CA-CRCs share a frequent ICShigh/CD274pos expression pattern with LS tumors. Elevated methylation in normal mucosa may indicate field cancerization as a feature of CA-CRC-associated tumorigenesis

    Laatukäsikirja jatkuvatoimisille vedenlaadun mittauksille - Opas hyviksi käytännöiksi

    Get PDF
    Laatukäsikirjan kirjoittaminen jatkuvatoimisille vedenlaadunmittauksille lähti tarpeesta saada yhdenmukaisempia käytäntöjä ja toimintamalleja koko ajan lisääntyvälle mittaustoiminnalle. Laatukäsikirjassa keskitytään jatkuvatoimisten mittausten laatuun vaikuttaviin yleisiin asioihin, jotta esitettävät toimenpiteet sopisivat useimmille vedenlaatua mittaaville laitteille ja olisivat käytettävissä eri vesiympäristöissä. Ohjeistusta ei ole kuitenkaan tarkoitettu ns. kenttämittareille, joita käytetään hetkellisten mittausten tekemiseen, ja joita ei jätetä maastoon pidemmäksi aikaa mittaamaan. Kirjassa käsitellään ensin yleisesti kaikkia vesiympäristöjä koskevia asioita, jonka jälkeen virtavesiä, järviä ja merialuetta koskevia asioita käsitellään erikseen, mikäli toimet poikkeavat eri ympäristöissä. Virtavesiä koskevia ohjeita voidaan soveltaa eri kokoisissa uomissa tehtäviin mittauksiin. Laatukäsikirja jatkuvatoimisille vedenlaadun mittauksille on tarkoitettu: - jatkuvatoimisia mittauksia suunnitteleville, toteuttaville ja niistä vastaaville henkilöille - laitetoimittajille, konsulteille - mittaustulosten käyttäjille Laatukäsikirjalla pyritään parantamaan ja yhtenäistämään mittausten laatua mittaustoiminnan kaikissa vaiheissa. Laadunvarmistus käsittää toimivan ketjun vesiympäristöön sopivan laitteen valinnasta, validoinnista, asennuksesta, huollosta, kalibroinnista, laadukkaista laboratorioanalyyseistä sekä ammattitaitoisesta mittausaineistojen laadunvarmistuksesta. Huolellinen toiminta ketjun kaikissa vaiheissa takaa mittausten onnistumisen ja aineistojen korkean laadun, mikä lisää olennaisesti myös aineistojen hyödyntämismahdollisuuksia. Laatukäsikirja on toteutettu ”Jatkuvatoimisten vedenlaatuasemien valtakunnallisen verkoston toteuttamissuunnitelma - JatkuvaLaatu” -hankkeessa vuonna 2018. Hankkeen toteutuksesta vastasi Suomen ympäristökeskus (SYKE) yhdessä Varsinais- Suomen ELY-keskuksen kanssa. Hanketta rahoitti ympäristöministeriö

    DNA methylation changes and somatic mutations as tumorigenic events in Lynch syndrome-associated adenomas retaining mismatch repair protein expression

    Get PDF
    Background: DNA mismatch repair (MMR) defects are a major factor in colorectal tumorigenesis in Lynch syndrome (LS) and 15% of sporadic cases. Some adenomas from carriers of inherited MMR gene mutations have intact MMR protein expression implying other mechanisms accelerating tumorigenesis. We determined roles of DNA methylation changes and somatic mutations in cancer-associated genes as tumorigenic events in LS-associated colorectal adenomas with intact MMR. Methods: We investigated 122 archival colorectal specimens of normal mucosae, adenomas and carcinomas from 57 LS patients. MMR-deficient (MMR-D, n 49) and MMR-proficient (MMR-P, n 18) adenomas were of particular interest and were interrogated by methylation-specific multiplex ligation-dependent probe amplification and Ion Torrent sequencing. Findings: Promoter methylation of CpG island methylator phenotype (CIMP)-associated marker genes and selected colorectal cancer (CRC)-associated tumor suppressor genes (TSGs) increased and LINE-1 methylation decreased from normal mucosa to MMR-P adenomas to MMR-D adenomas. Methylation differences were statistically significant when either adenoma group was compared with normal mucosa, but not between MMR-P and MMR-D adenomas. Significantly increased methylation was found in multiple CIMP marker genes (1612, NEUROGI,CRABP1, and CDKN2A) and TSGs (SERPI and SFRP2) in MMR-P adenomas already. Furthermore, certain CRC-associated somatic mutations, such as KRAS, were prevalent in MMR-P adenomas. Interpretation: We conclude that DNA methylation changes and somatic mutations of cancer-associated genes might serve as an alternative pathway accelerating LS-associated tumorigenesis in the presence of proficient MMR. Fund: Jane and Aatos Erkko Foundation, Academy of Finland, Cancer Foundation Finland, Sigrid juselius Foundation, and HiL1FE. (C) 2019 Published by Elsevier B.V.Peer reviewe

    No evidence of EMAST in whole genome sequencing data from 248 colorectal cancers

    Get PDF
    Microsatellite instability (MSI) is caused by defective DNA mismatch repair (MMR), and manifests as accumulation of small insertions and deletions (indels) in short tandem repeats of the genome. Another form of repeat instability, elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), has been suggested to occur in 50% to 60% of colorectal cancer (CRC), of which approximately one quarter are accounted for by MSI. Unlike for MSI, the criteria for defining EMAST is not consensual. EMAST CRCs have been suggested to form a distinct subset of CRCs that has been linked to a higher tumor stage, chronic inflammation, and poor prognosis. EMAST CRCs not exhibiting MSI have been proposed to show instability of di- and trinucleotide repeats in addition to tetranucleotide repeats, but lack instability of mononucleotide repeats. However, previous studies on EMAST have been based on targeted analysis of small sets of marker repeats, often in relatively few samples. To gain insight into tetranucleotide instability on a genome-wide level, we utilized whole genome sequencing data from 227 microsatellite stable (MSS) CRCs, 18 MSI CRCs, 3 POLE-mutated CRCs, and their corresponding normal samples. As expected, we observed tetranucleotide instability in all MSI CRCs, accompanied by instability of mono-, di-, and trinucleotide repeats. Among MSS CRCs, some tumors displayed more microsatellite mutations than others as a continuum, and no distinct subset of tumors with the previously proposed molecular characters of EMAST could be observed. Our results suggest that tetranucleotide repeat mutations in non-MSI CRCs represent stochastic mutation events rather than define a distinct CRC subclass.Peer reviewe

    Discovery of mitochondrial DNA variants associated with genome-wide blood cell gene expression : a population-based mtDNA sequencing study

    Get PDF
    The effect of mitochondrial DNA (mtDNA) variation on peripheral blood transcriptomics in health and disease is not fully known. Sex-specific mitochondrially controlled gene expression patterns have been shown in Drosophila melanogaster but in humans, evidence is lacking. Functional variation in mtDNA may also have a role in the development of type 2 diabetes and its precursor state, i. e. prediabetes. We examined the associations between mitochondrial single-nucleotide polymorphisms (mtSNPs) and peripheral blood transcriptomics with a focus on sex-and prediabetes-specific effects. The genome-wide blood cell expression data of 19 637 probes, 199 deep-sequenced mtSNPs and nine haplogroups of 955 individuals from a population-based Young Finns Study cohort were used. Significant associations were identified with linear regression and analysis of covariance. The effects of sex and prediabetes on the associations between gene expression and mtSNPs were studied using random-effect meta-analysis. Our analysis identified 53 significant expression probe-mtSNP associations after Bonferroni correction, involving 7 genes and 31 mtSNPs. Eight probe-mtSNP signals remained independent after conditional analysis. In addition, five genes showed differential expression between haplogroups. The meta-analysis did not show any significant differences in linear model effect sizes between males and females but identified the association between the OASL gene and mtSNP C16294T to show prediabetes-specific effects. This study pinpoints new independent mtSNPs associated with peripheral blood transcriptomics and replicates six previously reported associations, providing further evidence of the mitochondrial genetic control of blood cell gene expression. In addition, we present evidence that prediabetes might lead to perturbations in mitochondrial control
    • …
    corecore