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Abstract 

Background: The effect of mitochondrial DNA variation on peripheral blood transcriptomics in 

health and disease is not fully known. Sex-specific mitochondrially controlled gene expression 

patterns have been shown in Drosophila melanogaster but in humans, evidence is lacking. Functional 

variation in mitochondrial DNA may also have a role in the development of type 2 diabetes and its 

precursor state, i.e. prediabetes. We examined the associations between mitochondrial SNPs 

(mtSNPs) and peripheral blood transcriptomics with a focus on sex- and prediabetes-specific effects. 

Methods: The genome-wide blood cell expression data of 19,637 probes, 199 deep-sequenced 

mtSNPs, and nine haplogroups of 955 individuals from a population-based Young Finns Study cohort 

were used. Significant associations were identified with linear regression and analysis of covariance. 

The effects of sex and prediabetes on the associations between gene expression and mtSNPs were 

studied using random-effect meta-analysis. 

Results: Our analysis identified 53 significant expression probe-mtSNP associations after Bonferroni 

correction, involving 7 genes and 31 mtSNPs. Eight probe-mtSNP signals remained independent after 

conditional analysis. In addition, five genes showed differential expression between haplogroups. The 

meta-analysis did not show any significant differences in linear model effect sizes between males and 

females but identified the association between the OASL gene and mtSNP C16294T to show 

prediabetes-specific effects. 

Conclusions: This study pinpoints new independent mtSNPs associated with peripheral blood 

transcriptomics and replicates six previously reported associations, providing further evidence of the 

mitochondrial genetic control of blood cell gene expression. In addition, we present evidence that 

prediabetes might lead to perturbations in mitochondrial control. 
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Introduction 

Mitochondrial DNA (mtDNA) is a maternally inherited, circular molecule containing approximately 

16,600 nucleotides which encode 22 transfer RNAs, 2 ribosomal RNAs and 13 polypeptides (1). It 

has a high mutation rate and these polymorphisms have accumulated during evolution, dividing the 

human population into smaller mitochondrial haplogroups. The definition of these haplogroups is 

based on particular combinations of certain single-nucleotide polymorphisms (SNPs) in mtDNA. 

Mitochondrial haplogroups are also associated with geographic areas and populations. For example, 

virtually all Scandinavian mtDNA falls into ten different haplogroups: H, I, J, K, M, T, U, V, W, and 

X. (2, 3) 

Mitochondrial DNA is transmitted mainly via the maternal lineage, which could create a male–

female asymmetry in the expected severity of mitochondrial disease (4). The mitochondrial SNPs 

(mtSNPs) that are deleterious to males but not to females, such as those that impair sperm function, 

will not be subject to natural selection. This may play an important role for male-specific effects in 

health and disease. (5) This hypothesis was tested in a study conducted with Drosophila 

melanogaster, which found sex-specific asymmetry in nuclear gene expression patterns. A strong 

effect of mtSNPs on nuclear gene expression was only observed in males; in females the 

mitochondrial effect was negligible (6). A non-sequencing–based study conducted on humans showed 

15 significant associations between mtSNPs and nuclear gene expression but found little evidence of 

a sex-specific mitochondrial control of gene expression (7). The number of studied mtSNPs was only 

78, and it is possible that the sex-specific effects are mediated via other mtSNPs not included in the 

study sample.⁠ 

Interaction among mtDNA and nuclear DNA encoded factors is important to cellular function 

and in adaptation to environmental changes. Since the co-evolution of these two genomes has been 

demonstrated at a protein-protein interaction level and some modes of co-regulation at a 
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transcriptional level also exist, it is logical that disruption in mitochondria-nuclear signaling may lead 

to disease. (8, 9)⁠ Some mtSNPs have been reported to be associated with type 2 diabetes (T2D), but 

this association has been seen only in Asians (10–12). A Korean study found mitochondrial 

haplogroups to be associated with an increased or decreased risk of T2D and with altered nuclear 

gene expression patterns that correlate with the susceptibility to develop T2D (13). However, it is 

unclear to what extent the mitochondrial-nuclear interaction is altered when the glucose homeostasis 

has already been impaired. Therefore, in addition to sex-specific differences, of special interest in this 

study is prediabetes, a precursor state and a major risk factor for the development of T2D (14). 

In this study, we wanted to a) replicate the earlier gene expression–mtSNP associations (7), b) to 

find new functional associations with a greater number of mtSNPs by using population-based mtDNA 

sequencing, c) to study the differential gene expression between the major Scandinavian haplogroups 

present in our study population, d) to investigate whether any gene expression–mtSNP associations 

show sex-specific differences, and, finally, e) to see whether gene expression–mtSNP associations are 

affected by the onset of prediabetes. 

Results 

Effect of mtSNPs and haplogroups on peripheral blood gene expression 

A total of 3,907,763 expression probe-mtSNP pairs were tested for association in a linear regression 

model. The genomic inflation factor was 1.00 (quantile-quantile plot for expected versus observed p-

values shown in Supplementary material, Figure S1), indicating that an inflation of the genetic 

association due to population stratification or undetected systematic error is unlikely. As shown in 

Table 1, a total of 53 expression probe-mtSNP pairs were significant after Bonferroni correction, 

corresponding to five nuclear and two mitochondrial genes and 31 mtSNPs. These seven identified 

genes regulated by mtSNPs were signal peptidase complex subunit 2 pseudogene 4 (SPCS2P4), ring 

finger protein 113A (RNF113A), signal peptidase complex subunit 2 (SPCS2), mitochondrially 
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encoded cytochrome c oxidase II (MT-CO2), cardiolipin synthase 1 (CRLS1), solute carrier family 25 

member 15 (SLC25A14), and mitochondrially encoded 16S RNA like 1 (MT-RNR2L1).  

The pairwise conditional analysis results for all significant mtSNPs with r2 > 0.30 are shown in 

online supplementary material, Table S1. As expected, the results were influenced by the extent of 

pairwise correlations and the strength of individual associations. Five probe-mtSNP pairs that 

survived all pairwise conditional analyses are shown in Table 2. The correlation was very low between 

the two mtSNPs that associated with MT-CO2 (r2 = 8.20 x 10-4) and only one mtSNP associated with 

MT-RNR2L1; these associations were not subjected to conditional analysis. In total, six mtSNPs 

(G8269A, G9055A, A11251G, C15452T, A16162G, and C16256T) had independent effect on gene 

expression. Figure 1 illustrates the normalized expression intensities for the top four genes relative to 

the alleles of the top associated independent mtSNP. 

ANCOVA and Tukey’s post hoc test indicated that five expression probes, corresponding to four 

nuclear and one mitochondrial genes, showed differential expression between haplogroups (λGC = 

1.04, Supplementary Figure S2). Three of the genes, SPCS2P4, RNF113A, and SLC25A14, were also 

associated with individual mtSNPs, but the other two genes, solute carrier family 2 member 8 

(SLC2A8, Illumina Array Address 5870326) and mitochondrially encoded NADH dehydrogenase 5 

(MT-ND5, Illumina Array Address 4880477), were not identified in the probe-mtSNP analysis. The 

results of Tukey’s post hoc test are shown in Table 3. Figure 2 illustrates the expression levels of the 

top two genes, SPCS2P4 and RNF113A, which were significantly lower in haplogroup K compared 

to all other eight major haplogroups. The expression levels of the other three genes across haplogroups 

are shown in Supplementary Figure S3. 

The genes identified to be associated with mtSNPs or haplogroups and not located in the 

mitochondrial genome were SPCS2P4, RNF113A, SPCS2, CRLS1, SLC25A14, and SLC2A8. None 

of these genes showed cross-hybridization with sequences on the mitochondrial genome. 
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Sex- and prediabetes-specific effects 

A random-effect meta-analysis showed no statistically significant differences in the effect sizes of 

gene expression between the sexes (results not shown). The characteristics of the population used in 

the prediabetes-specific analysis are shown in Table 4. Age, sex and body mass index all differed 

significantly between the groups (p ≤ 0.001).  For one probe-mtSNP pair the meta-analysis showed a 

significant difference in the effect sizes between subjects with prediabetes and controls. A p-value of 

8.91 x 10-9 (λGC = 0.99, Supplementary Figure S4) corresponded to the association between the 

expression of 2’-5’-oligoadenylate synthase like (OASL, Illumina Array Address ID 6280543) and 

mtSNP C16294T. Subjects with prediabetes had an effect estimate of -0.74 (standard error of 0.12) 

and a corresponding p-value of 9.69 x 10-6 (λGC = 0.99, Supplementary Figure S5), while the control 

group had an effect estimate of 0.43 (standard error of 0.12) and a p-value of 4.22 x 10-4   (λGC = 1.00, 

Supplementary Figure S6). When we added an interaction term between C16294T and prediabetes 

status to the linear model explaining the expression of OASL, the interaction between the minor allele 

T and the presence of prediabetes was significant (effect estimate -1.07, standard error 0.19, and a 

corresponding p-value of 1.11 x 10-8).  That is to say, on average, subjects with prediabetes and the 

minor allele T had lower expression levels of OASL compared to the reference allele, while subjects 

with the T allele but no prediabetes had higher expression levels compared to the reference allele, as 

can be seen in Figure 3. BLAST showed no evidence for cross-hybridization between OASL and 

sequences on the mitochondrial genome. 

Discussion 

In this study, we first wanted to replicate the earlier gene-mtSNP associations (7)⁠. We were able to 

replicate six of the 15 reported associations. The nucleotide sequence in these previous results differs 

from our sequence by one position; mtSNP A3481G in the previous sequence corresponds with 

A3480G in our sequence, and A10551G with A10550G. 
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Secondly, we set out to find new associations with a greater number of mtSNPs by using 

population-based mtDNA sequencing. From 3,907,763 analyzed expression probe-mtSNP pairs, we 

identified 47 new associations after a strict correction for multiple testing. The majority of the 

associations included either pseudogene SPCS2P4 in chromosome 1 or RNF113A in the X 

chromosome. The first is involved in the biosynthesis of the N-glycan precursor and transfer to a 

nascent protein, while the latter encodes a protein containing two zinc finger domains. 

After applying pairwise conditional analysis to all mtSNPs showing at least modest linkage 

disequilibrium, five probe-mtSNP pairs showed evidence for independent signaling. In the expression 

of SPCS2P4, the effects of G9055A and A11251G/C15452T were in opposite directions which also 

supports the independence of these signals. For SLC25A14 and CRLS1, none of the signals remained 

independent. This could be explained by the high linkage disequilibium (pairwise r2 > 0.89 for all 

mtSNPs), all variants that associated with these two genes in the unconditioned analysis together 

predispose to differential gene expression. In addition, the associations with mitochondrial genes MT-

CO2 and MT-RNR2L1 seem to result from independent signals. That is to say, in total, eight mtSNP-

gene associations were independent. 

We also discovered that the expression intensities of four nuclear and one mitochondrial genes 

differed between the major Scandinavian haplogroups present in our study population. The 

haplogroup distribution shown in Table 5 is similar to the one previously reported in Finnish 

population. Compared to other European populations, the frequency of haplogroup U appears to be 

higher and the frequency of haplogroup K lower in Finland. (3, 15) The lower intensities of SPCS2P4 

and RNF113A in haplogroup K result from the fact that the majority of the mtSNPs associated with 

these two genes (e.g. G9055A, A3480G, and A10550G) are also the defining variants for this 

haplogroup (16). The expression intensities of two genes, SLC2A8 and MT-ND5, were not associated 

at the mtSNP level. However, the majority of the mtSNPs (C295T, C462T, A12612G, G13708A, 

C16069T) defining haplogroup J (16)⁠ that associated with MT-ND5, were in the top 20 variants 
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associating with this gene. Those associations were not however significant after correction for 

multiple testing. For haplogroup U that associated with SLC2A8⁠, none of the defining variants were 

in top 20 mtSNPs associating with this gene. This implies that the haplogroup effect is driven by 

small individual effects of many mtSNPs, especially the expression of SLC2A8.⁠ 

As already discussed earlier (7), the biological relevance of these reported associations remain 

unclear, and they do not necessarily imply causal relationships—i.e. all these mtSNPs are not 

necessarily expression regulatory SNPs. However, the associations may equally represent the altered 

cellular activities resulting from the mtSNPs that the nuclear genome is then compensating for (13). 

In other studies, some of the reported mtSNPs have been associated with non-mitochondrial diseases. 

For example, the variant G9055A and haplogroup K have been found to increase breast cancer risk 

in European-American women (17). Interestingly, increased levels of protein coded by RNF113A in 

plasma have been suggested to act as a biomarker for breast cancer (18), while our analysis showed 

a reduced expression of RNF113A associated with this mtSNP and haplogroup. 

Our fourth aim was to investigate whether any probe–mtSNP associations show sex-specific 

differences by using a random-effect meta-analysis, which did not reveal any significant results. 

However, it is possible that sexually dimorphic effects on gene expression are mediated via other 

mtSNPs that were not included in this study. It is also worth mentioning that, to our knowledge, the 

only study that has previously examined these sex-specific effects in humans only took into account 

homoplasmic mtDNA alleles (7)⁠, which was also the case in the present study. For this reason, 

additional studies also considering heteroplasmic alleles are needed, although the link between 

heteroplasmy and sex-specific effects is not obvious. 

Finally, we tested the hypothesis that probe-mtSNP associations are affected by the onset of 

prediabetes. We were able to find support for this hypothesis by comparing the effect sizes between 

samples with and without prediabetes, which showed that the onset of prediabetes affects the 
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mitochondrial control of the expression of OASL through mtSNP C16294T. This mtSNP in the 

mtDNA control region has also been previously associated with cardiovascular risk factors, it has 

been linked to obesity in an Austrian population (19), and there is also evidence that C16294T is 

associated with coronary artery disease, although possibly through linkage to mtSNP T16189C (20).  

Functionally, OASL encodes an interferon-inducible antiviral protein, and its high expression levels 

in visceral adipose tissue, together with other three interferon signature genes, have been found to be 

positively correlated with adipose tissue and systemic insulin resistance (21). These previous results 

link OASL to prediabetes, since most persons with prediabetes are also insulin-resistant (22). Our 

results are in contrast to those published earlier in adipose tissue (21),⁠ since the expression of OASL 

was lower in T allele carriers with prediabetes compared those without prediabetes. However, 

profiling gene expression from peripheral blood leukocytes makes it challenging to speculate how 

the expression levels represent the expression in other tissues, such as adipose tissue.  One hypothesis 

based on our results would be that the chronic low-grade inflammation in prediabetes (23) is, to some 

extent, ⁠milder in individuals with mtSNP C16294T. Whether this has any clinical significance remains 

to be examined in longitudinal studies. In addition, the effect of prediabetes on probe-mtSNP 

associations should be replicated in other datasets. 

The prevalence of prediabetes in the non-diabetic Finnish population used in this study was 29.8 

%. In another Finnish cohort, the prevalence was 9.6 % in men and 10.4 % in women aged between 

45 and 54 years (24). The higher prevalence in our study can partly be explained by the lower cut-off 

point for impaired fasting glucose. In addition, the study sample used in (24)⁠ included also those with 

T2D, whereas they were excluded in the current study. The current prevalence is in line with the one 

reported in the United States, where 35 % of adults aged 20 years or older had prediabetes in 2005-

2008 (25). Although the prevalence is high, 5-10 % of individuals per year with prediabetes will 

progress to T2D, with the same proportion converting back to normoglycaemia (26)⁠.⁠ 
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The strength of this study is that the mtSNPs were obtained through deep sequencing. Compared 

to microarray genotyping, this increased the number of mtSNPs to be included in the analyses. This 

study also has some limitations. The Finnish gene pool has been shown to be distinctive, and the 

results may not be directly generalizable to populations with a different ethnic background, a fact that 

is pronounced in mitochondrial genetic studies. Another limitation is that no oral glucose tolerance 

tests were performed on the study population and the definition of prediabetes was based only on 

fasting plasma glucose and HbA1c levels. However, the HbA1c cut-off point for prediabetes has a 

high specificity to identify cases of impaired glucose tolerance (14). We also recognize that 

microarray studies are limited by multiple testing problems and false positives, although the number 

of false-positive results was minimized by using mitochondrial PCs as covariates and a strict 

Bonferroni correction. 

In summary, this study provides both novel and additional evidence for the mitochondrial genetic 

control of peripheral blood cell gene expression. No significant evidence of sex-specific effects of 

mtSNPs on gene expression were found, but we present evidence that the onset of prediabetes may 

lead to perturbations in this mitochondrial genetic control. The possible clinical relevance of these 

results remains to be examined in future functional and longitudinal studies. 

Materials and Methods 

Study participants 

The Cardiovascular Risk in Young Finns Study (YFS, http://youngfinnsstudy.utu.fi) is a Finnish 

longitudinal population study on the evolution of cardiovascular risk factors from childhood to 

adulthood (27). We used data from the follow-up in 2011 when the subjects were aged between 34 

and 49 years, with the exception of the mtDNA data, which was gathered in 2007. The follow-up 

studies in 2007 and 2011 included 2,204 and 2,060 participants, respectively. The study plan was 

approved by the ethics committees of all participating hospital districts, and the study protocol of 
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each study phase corresponded with the proposal by the World Health Organization. All subjects gave 

written informed consent, and the study was conducted in accordance with the Declaration of 

Helsinki. 

Blood transcriptomic analysis, RNA analysis, and data processing 

Whole-blood samples were obtained from 2,049 individuals for RNA isolation. 63 samples were 

discarded during the RNA isolation protocol, leading to 1,987 samples including one technical 

replicate taking part in the genome wide expression analysis. 322 samples had too low concentration 

after amplification step. After this, 1,667 samples (including three replicates, two from the mRNA 

amplification step) were analyzed with an Illumina HumanHT-12 version 4 Expression BeadChip 

(Illumina Inc.) containing 47,231 expression and 770 control probes. The transcripts detected 

(detection p-value < 0.01) in less than 5 % of samples were excluded from the analysis. After this 

filtering 19,637 genes were used for analysis. We disregarded four samples with less than 6,000 

significantly detected expression probes (detection p-value < 0.01). 

The expression data was processed in R (http://www.r-project.org/) using a nonparametric 

background correction, followed by quantile normalization with control and expression probes, using 

the neqc function in the limma package (28) and a log2 transformation. The expression levels were 

also zero-centered, and rank-based inverse normal transformation was applied to further normalize 

the expression levels. Based on RPS4Y1–2 and XIST mRNA levels on the Y and X chromosomes, 

respectively, we excluded nine samples due to mismatch with the recorded sex. After quality control, 

expression data were available for 1,654 samples including four technical replicates, which were used 

to examine batch effects and excluded subsequently. In summary, the expression analysis was 

successful for 19,637 probes and 1,650 samples. Other details of the process have been described 

previously by Turpeinen et al. (29). 
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Genomic DNA sample (n = 1,817) concentrations were measured from whole-blood samples with the 

Qubit BR dsDNA kit (Life Technologies Ltd). Mitochondrial DNA was amplified from the genomic 

DNA using the REPLI-g Mitochondrial DNA kit (Qiagen) in a 15 µl reaction volume. After the 

enrichment, the amplified mtDNA samples were processed into Illumina deep sequencing compatible 

libraries with the Nextera DNA sample preparation kit (Illumina Inc.). The mtDNA concentrations 

were measured with Qubit dsDNA for Nextera tagmentation reaction. The reaction volume in the 

Nextera tagmentation and amplification steps was 20 µl, and after both steps the libraries were 

purified with a EdgeBio Performa V3 96-Well Short Plate (Edge BioSystems). After the 

amplification, the libraries were first incubated with 4 µl of EdgeBio SOPE Resin and then purified 

with EdgeBio Performa plates. After purification, 48 samples with different index tags were pooled 

together (2 µl each) in each pool and concentrated with DNA Clean & ConcentratorTM-5 (Zymo 

Research). The final volume of the concentrated pool was 15 µl. The sequencing-ready libraries were 

quantitated with an Agilent 2100 Bioanalyzer High Sensitivity kit (Agilent). The libraries were deep-

sequenced with the Illumina HiSeq system. All the samples (n = 1,667) that achieved any mean bait 

coverage were included in the quality control process. 

The primer sites in the REPLI-g kit have not been published and the data for each of the 16 

samples was therefore validated by amplifying the mtDNA in two different PCR amplicons covering 

the whole mtDNA. The primers have been previously described by Pietiläinen et al. (30). The 

amplicons were processed into Illumina-compatible sequencing libraries according to the same 

Nextera protocol as detailed above. The data was analyzed using an in-house-developed 

bioinformatics pipeline (31). The variants from REPLI-g amplification and PCR amplification were 

compared, and no significant differences were observed. The comparison results confirm that REPLI-

g primers do not affect the variant detection. 

MtDNA sequencing
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First, samples with individual missingness > 0.10 (134 samples) were excluded. Next, samples were 

classified into haplogroups by using HaploGrep (32) (Phylotree build 16) (16) after comparison to 

the revised Cambridge Reference Sequence (rCRS) (1). Only those individuals whose haplogroup 

quality score was above 0.90 were included for further analyses (66 samples rejected). At this quality 

threshold, haplogroup assignment is quite reliable, according to the HaploGrep manual. After this, 

1,467 samples remained for further analysis. Then, samples that had both gene expression and 

mtDNA data were merged, after which 955 samples were remaining. Next, 29 mtSNPs that obtained 

mean call rates of < 0.85 were excluded, all samples had mean call rate above this value. After this, 

heteroplasmic alleles’ status were set to missing. The remaining quality control steps included 

filtering for missingness by mtSNP > 0.05 (34 mtSNPs discarded), and minor allele frequency (MAF) 

< 0.01 (538 mtSNPs discarded). After these procedures, a total of 199 mtSNPs from 955 samples 

(548 women and 407 men) were available for probe-mtSNP association analysis (Supplementary 

Material, Table S2). 

 For association testing, the haplogroups were assigned to major haplogroups. Haplogroups with 

a frequency of less than 0.01 were excluded, leaving 934 samples for the haplogroup-probe analysis. 

The haplogroup frequencies are shown in Table 5. All major Scandinavian haplogroups except 

haplogroup M were present (3)⁠. 

Definition of prediabetes 

Venous blood samples were drawn after an overnight fast for the determination of serum glucose and 

glycated hemoglobin A1c (HbA1c). The classification of prediabetes was based on fasting glucose 

and HbA1c according to the criteria of the American Diabetes Association (14). People with impaired 

fasting glucose were defined as having a fasting plasma glucose level of 5.6–6.9 mmol/L or an HbA1c 

level of 39–47 mmol/mol without a diagnosis of T2D. The diagnosis of T2D included subjects with 

a fasting plasma glucose level of 7.0 mmol/L or higher or an HbA1c level of 48 mmol/mol or higher, 

MtDNA quality control and data processing 
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or those who reported using oral glucose‐lowering medication or insulin (but had not reported having 

type 1 diabetes), or who had a reported diagnosis of T2D by a physician. Those diagnosed with type 

1 diabetes were also ruled out. Of the 833 subjects for whom gene expression and mtDNA data and 

prediabetes status were available, 249 had prediabetes, and 584 controls had normal levels of fasting 

plasma glucose and HbA1c. 

Statistical analysis 

In order to investigate the association of peripheral blood gene expression with mtSNPs, the 

expression levels were modeled as a linear function of the presence (coded as 1) or absence (coded 

as 0) of the minor allele using the lm function in R. Age and sex were added as covariates to the linear 

model. We calculated the p-values using a standard F test with one degree of freedom and accounted 

for multiple testing using the Bonferroni correction. Significance was defined as p < 1.28 × 10-8 (i.e. 

0.05/[199 × 19,637]). With this p-value, MAF of 0.01, and a minimum statistical power of 0.80, the 

minimum detectable effect size was 1.58. With MAF of 0.05, the minimum effect size was 0.72. (33)⁠ 

Analysis of covariance (ANCOVA) with age and sex as covariates was employed to flag genes for 

those showing differential expression between haplogroups. All genes with a p-value of < 2.55 × 10-

6 (i.e. 0.05/19,637) were compared using Tukey’s honest significant difference test to confirm the 

between-haplogroup differences. A Tukey-adjusted p-value of < 0.05 was considered statistically 

significant. 

The sex-specific effects of mtSNPs on gene expression were tested by applying the same linear 

model as described above (sex was removed from the covariates) to males and females separately. 

Differences in effect sizes were compared by applying a random-effect meta-analytic model to each 

probe using the MetaDE package (34). Heterogeneity was examined by Cochran’s Q test with the 

corresponding p-value. A significant p-value would suggest that there is a significant difference in 

effect sizes between the sexes. For the sex-specific meta-analysis, the number of mtSNPs tested was 
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156 because for some mtSNPs the minor allele frequency was less than 0.01 in either males or females 

(Supplementary Material, Table S3). Significance was then defined as p < 1.63 × 10-8 (i.e. 0.05/[156 

× 19,637]). 

The effect of prediabetes on the association between mtSNPs and gene expression was studied 

similarly. Age, sex, and body mass index were added as covariates to the linear regression models. 

The number of mtSNPs included was now 127, resulting in significance in random-effect meta-

analysis defined as p < 2.00 × 10-8 (i.e. 0.05/[127 × 19,637]) (Supplementary Material, Table S4). The 

Mann-Whitney U test was used for age and body mass index and the χ2 test for sex when the two 

groups were compared. After identifying the significant associations, we also studied the interaction 

between significant mtSNPs and prediabetes status on the expression of pinpointed genes by adding 

an interaction term to the linear model described above. 

Principal component (PC) analysis was performed on all nuclear probes passing quality control. 

The prcomp function (package stats) was used to calculate nuclear PCs 1–20 from mean expression 

levels. The use of gene expression principal components should reduce the effect of technical factors 

(Illumina chip assignment, the RNA amplification batch, the RNA isolation batch, and the sample 

storage time, in particular the time between blood donation and RNA isolation) in our data (35)⁠. The 

use of mitochondrial PCs has been demonstrated to be a robust method to control of confounding due 

to population stratification. In addition, the use of mitochondrial PCs effectively removes false-

positive associations but does not cause loss in power for detection of true associations. (36) PC 

analysis was performed on all mtSNPs passing quality control. Since the mtSNP were represented as 

binary variables, i.e. the presence or absence of minor allele, logisticPCA package (37) was used to 

extract mitochondrial PCs 1-20. 

Both nuclear and mitochondrial PCs were added as covariates, in addition to those mentioned 

above, in the linear mtSNP association models until no additional reduction in genomic inflation 
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factor (λGC) could be achieved. Nuclear PCs 1–11 and mitochondrial PCs 1–2 were used for all probe-

mtSNP association analyses. For haplogroup analysis in ANCOVA, nuclear PCs 1–11 were used. 

Mitochondrial PCs cannot be applied to haplogroup analysis, since the haplogroups are strongly 

correlated with the mitochondrial PCs. The genomic inflation factor was calculated using the 

GenABEL package (38). Values of λGC < 1.05 are generally considered benign (39). 

For all significant mtSNPs for each probe, pairwise linkage disequilibrium between mtSNPs was 

quantified as squared Pearson correlation r2. All significant mtSNPs in at least modest pairwise 

linkage disequilibrium (r2 > 0.30) were subjected to pairwise conditional analysis in order to identify 

the independent signals. Conditional analysis was performed by using the same linear model as in the 

full analysis but additionally conditioning for one additional significant mtSNP at a time. We applied 

a mtSNP-specific Bonferroni correction (i.e., correction for the number of pairwise analyses made 

for each mtSNP) to account for multiple testing. 

All significant probes from the above analyses were tested for cross-hybridization with 

sequences other than the target transcript using algorithm blastn from BLAST (40). We were 

particularly interested in probes that have sequence similarities with the mtDNA. Probes were 

considered to show strong evidence for cross-hybridization with the mtDNA if probes’ sequences had 

90 % identity over the aligned region, at least 40 of 50 matching bps, and no gaps. 

Data availability 

Due to legal restrictions, the Ethics Committee of the Hospital District of Southwest Finland has 

stated that individual level data cannot be stored in public repositories or otherwise made publicly 

available. Data are, however, available from the authors upon a reasonable request. 
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Figure 1. Combined boxplot and violin plot of the normalized expression intensities for the top four 

genes relative to the alleles of the top associated independent mtSNP. 
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Figure 2. Combined boxplot and violin plot of the normalized expression intensities of SPCS2P4 

and RNF113A across the haplogroups. 
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Figure 3.  Combined boxplot and violin plot of the normalized expression intensities of OASL 

across the individuals with and without prediabetes relative to mtSNP C16294T. 
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Table 1. 53 probe-mtSNP associations that had a p of < 1.28×10-8. The beta-coefficient represents 

the proportion of 1 SD change in normalized gene expression intensity (mean = 0, SD = 1).  An 

asterisk (*) marks the associations that were replicated from the previous results (7)⁠⁠.

Gene Illumina array ID mtSNP MAF Beta SE P-value Replication 
SPCS2P4 4210315 G9055A 0.04 -1.11 0.08 1.81 x 10-39 
SPCS2P4 4210315 A3480G 0.04 -1.09 0.09 4.84 x 10-32 * 
SPCS2P4 4210315 A10550G 0.04 -1.08 0.09 9.49 x 10-32 * 
SPCS2P4 4210315 C14167T 0.04 -1.08 0.09 9.49 x 10-32 
SPCS2P4 4210315 T16224C 0.05 -0.95 0.08 1.77 x 10-30 
SPCS2P4 4210315 T11299C 0.04 -1.03 0.09 5.94 x 10-29 
SPCS2P4 4210315 T1189C 0.03 -1.04 0.09 1.17 x 10-27 
RNF113A 6940196 G9055A 0.04 -1.23 0.13 2.48 x 10-21 
SPCS2P4 4210315 T9698C 0.05 -0.74 0.08 1.01 x 10-19 * 
RNF113A 6940196 C14167T 0.04 -1.25 0.14 1.87 x 10-18 
RNF113A 6940196 A10550G 0.04 -1.24 0.14 1.95 x 10-18 
RNF113A 6940196 A3480G 0.04 -1.24 0.14 2.70 x 10-18 
SPCS2P4 4210315 A9093G 0.02 -1.03 0.12 4.72 x 10-18 
RNF113A 6940196 T11299C 0.04 -1.20 0.14 1.21 x 10-17 
RNF113A 6940196 T1189C 0.03 -1.23 0.14 4.42 x 10-17 
SPCS2P4 4210315 T9903C 0.02 -1.06 0.12 7.24 x 10-17 
SPCS2P4 4210315 T14798C 0.10 -0.60 0.07 9.74 x 10-16 
SPCS2P4 4210315 A1811G 0.08 -0.50 0.07 4.86 x 10-14 
RNF113A 6940196 T16224C 0.05 -0.96 0.13 8.58 x 10-14 

SPCS2 7040068 G9055A 0.04 -0.93 0.12 9.59 x 10-14 
CRLS1 2710446 A8869G 0.02 -0.75 0.10 5.30 x 10-13 
CRLS1 2710446 T4639C 0.02 -0.75 0.10 8.45 x 10-13 

SPCS2P4 4210315 G11377A 0.03 -0.76 0.11 2.19 x 10-12 
RNF113A 6940196 T9698C 0.05 -0.87 0.12 2.57 x 10-12 

CRLS1 2710446 C5263T 0.02 -0.75 0.11 5.28 x 10-12 
RNF113A 6940196 A9093G 0.02 -1.23 0.18 7.40 x 10-12 
MT-CO2 6550386 G8269A 0.01 -1.62 0.24 2.09 x 10-11 * 

SPCS2P4 4210315 A11251G 0.12 1.04 0.15 2.64 x 10-11 
SPCS2P4 4210315 C15452A 0.12 1.03 0.15 5.58 x 10-11 
RNF113A 6940196 T9903C 0.02 -1.24 0.19 2.04 x 10-10 

SLC25A14 1710754 A3505G 0.05 0.77 0.12 3.28 x 10-10 
SLC25A14 1710754 T1243C 0.05 0.76 0.12 4.54 x 10-10 
RNF113A 6940196 T14798C 0.10 -0.72 0.11 4.76 x 10-10 

SPCS2 7040068 A3480G 0.04 -0.85 0.14 4.81 x 10-10 * 
SPCS2 7040068 A10550G 0.04 -0.85 0.14 5.04 x 10-10 * 

MT-RNR2L1 1230164 C16256T 0.07 0.39 0.06 5.28 x 10-10 
SPCS2 7040068 C14167T 0.04 -0.85 0.14 5.44 x 10-10 
SPCS2 7040068 T16224C 0.05 -0.76 0.12 9.72 x 10-10 

SLC25A14 1710754 A11947G 0.05 0.75 0.12 1.03 x 10-9 
SLC25A14 1710754 G8994A 0.05 0.74 0.12 1.09 x 10-9 
RNF113A 6940196 T4216C 0.12 1.32 0.22 1.44 x 10-9 
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SLC25A14 1710754 G5046A 0.05 0.74 0.12 1.76 x 10-9 
SPCS2P4 4210315 A10398G 0.14 -0.40 0.07 1.80 x 10-9 

SLC25A14 1710754 G15884C 0.05 0.74 0.12 2.25 x 10-9 
RNF113A 6940196 A1811G 0.08 -0.60 0.10 3.43 x 10-9 
RNF113A 6940196 C15452A 0.12 1.39 0.24 5.22 x 10-9 
MT-CO2 6550386 A16162G 0.06 -0.66 0.11 5.48 x 10-9 

SPCS2 7040068 T11299C 0.04 -0.79 0.13 7.40 x 10-9 
RNF113A 6940196 A11251G 0.12 1.36 0.23 7.84 x 10-9 

SLC25A14 1710754 T12414C 0.05 0.69 0.12 8.01 x 10-9 
SPCS2 7040068 T1189C 0.03 -0.82 0.14 8.27 x 10-9 

SLC25A14 1710754 G5460A 0.05 0.65 0.11 9.93 x 10-9 
RNF113A 6940196 G11377A 0.03 -0.93 0.16 1.18 x 10-8 

Abbreviations: MAF, minor allele frequency; SE, standard error; SD, standard deviance 
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Table 2. Independent mtSNP-gene association signals from the pairwise conditional analysis. The 

beta-coefficient represents the proportion of 1 SD change in normalized gene expression intensity 

(mean = 0, SD = 1). The mtSNP-specific Bonferroni-corrected p-value accounts for the number of 

pairwise analyses made for each mtSNP and is defined as the limit of significance. 

Gene mtSNP Conditional 
p-value 

Conditional beta Conditional SE mtSNP-specific Bonferroni-
corrected p-value 

SPCS2P4 G9055A 
1.80 x 10-9 –  
4.14 x 10-29 -0.97 – -1.36 0.09 – 0.20 4.17 x 10-3 

SPCS2P4 A11251G 1.41 x 10-3 0.97 0.30 5.00 x 10-2 

SPCS2P4 C15452A 4.28 x 10-6 1.13 0.24 5.00 x 10-2 

RNF113A G9055A 
1.40 x 10-4 – 
2.82 x 10-14 

-1.18 – -1.36 0.14 – 0.32 4.17 x 10-3 

SPCS2 G9055A 
3.68 x 10-5 – 

1.38 x 10-6 
-0.90 – -1.39 0.21 – 0.31 8.33 x 10-3 

Abbreviations: SE, standard error; SD, standard deviance 
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Table 3. Haplogroup-wise comparisons from Tukey’s post-hoc test for the five differentially 

expressed genes identified in ANCOVA. One unit of difference in means represents the proportion 

of 1 SD change in normalized gene expression intensity.

Comparison Difference in means [95% CI] Tukey-adjusted p-value 
SPCS2P4 
K-H -1.27 [-1.80, -0.73] 1.33 x 10-11 
K-U -1.23 [-1.78, -0.68] 2.38 x 10-10 
K-J -1.30 [-1.93, -0.67] 8.57 x 10-9 
K-W -1.35 [-2.04, -0.66] 6.08 x 10-8 
K-V -1.17 [-1.82, -0.52] 9.93 x 10-7 
K-T -1.10 [-1.78, -0.43] 1.55 x 10-5 
K-I -1.47 [-2.38, -0.55] 2.74 x 10-5 
K-X -1.28 [-2.14, -0.43] 1.09 x 10-4 

RNF113A 
K-H -1.44 [-1.97, -0.91] 
K-U -1.53 [-2.07, -0.99] 
K-J -1.52 [-2.14, -0.90] 2.48 x 10-12 
K-T -1.44 [-2.10, -0.77] 1.06 x 10-9 
K-W -1.42 [-2.10, -0.74] 4.73 x 10-9 
K-X -1.48 [-2.32, -0.65] 1.65 x 10-6 
K-I -1.57 [-2.47, -0.67] 2.75 x 10-6 
K-V -1.03 [-1.67, -0.39] 2.21 x 10-5 
K-U -0.50 [-0.94, -0.06] 1.20 x 10-2 

SLC25A14 
W-J 0.81 [0.21, 1.41] 1.01 x 10-3 
W-H 0.55 [0.06, 1.05] 1.63 x 10-2 
K-J 0.69 [0.05, 1.33] 2.53 x 10-2 
W-X 0.86 [0.02, 1.69] 3.79 x 10-2 

SLC2A8 
U-J -0.46 [-0.88, -0.04] 2.06 x 10-2 
U-H -0.25 [-0.50, 0.00] 4.34 x 10-2 

MT-ND5 
J-V 0.84 [0.30, 1.39] 7.05 x 10-5 
J-U 0.59 [0.16, 1.01] 5.78 x 10-4 
J-H 0.50 [0.10, 0.91] 3.24 x 10-3 
J-W 0.69 [-1.29, -0.09] 1.14 x 10-2 
Abbreviations: CI, confidence interval; SD, standard deviance 
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Table 4. Characteristics of the population used in the prediabetes-specific analysis. Values are 

means (SD). The Mann-Whitney U test was used for age and body mass index and the χ2 test for 

sex when the two groups were compared. P-value ≤ 0.001 for all comparisons. 

Controls Individuals with prediabtes 

Number of subjects in group 584 249 

Age, years 41.6 (5.00) 42.8 (5.10) 

Males (%) 202 (34.5) 143 (57.4) 

Body mass index, kg/m2 25.5 (4.16) 28.6 (5.42) 
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Table 5. Absolute and relative mitochondrial haplogroup frequencies in the study population. 

Haplogroup Absolute frequency Relative frequency (%) 
H 405 43.4 
U 240 25.7 
J 69 7.4 
V 58 6.2 
T 48 5.1 
W 43 4.6 
K 35 3.7 
X 20 2.1 
I 16 1.7 
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Abbreviations 

mtDNA, mitochondrial DNA; mtSNP, mitochondrial single nucleotide polymorphism; T2D, type 2 

diabetes; YFS, Young Finns Study; MAF, minor allele frequency; HbA1c, glycated hemoglobin; 

ANCOVA, analysis of covariance; PC principal component; SE, standard error; SD, standard 

deviance; CI, confidence interval  




