1,369 research outputs found
Liquid State Anomalies for the Stell-Hemmer Core-Softened Potential
We study the Stell-Hemmer potential using both analytic (exact and
approximate ) solutions and numerical simulations. We observe in the
liquid phase an anomalous decrease in specific volume and isothermal
compressibility upon heating, and an anomalous increase in the diffusion
coefficient with pressure. We relate the anomalies to the existence of two
different local structures in the liquid phase. Our results are consistent with
the possibility of a low temperature/high pressure liquid-liquid phase
transition.Comment: 4 pages in one gzipped ps file including 11 figures; One RevTex and
11 gzipped eps figure
Application of a Microfluidic Gas-to-Liquid Interface for Extraction of Target Amphetamines and Precursors from Air Samples.
The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m-3. These gas samples were produced by a gas generation system directly in Tedlar® bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar® bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture
Matter Wave Scattering and Guiding by Atomic Arrays
We investigate the possibility that linear arrays of atoms can guide matter
waves, much as fiber optics guide light. We model the atomic line as a quasi-1D
array of s wave point scatterers embedded in 2D. Our theoretical study reveals
how matter wave guiding arises from the interplay of scattering phenomena with
bands and conduction along the array. We discuss the conditions under which a
straight or curved array of atoms can guide a beam focused at one end of the
array.Comment: Submitted to Phys. Rev.
An effective Physical Developer (PD) method for use in Australian laboratories
© 2018, © 2018 Australian Academy of Forensic Sciences. Physical Developer (PD) is an underutilized technique for the development of latent marks on porous surfaces that have been wet, or as a subsequent technique in a development sequence. It is a multistep technique that works by selectively reducing silver ions to silver metal at nucleating sites in fingermark residue. Its use is associated with a plethora of issues, largely surrounding the inherent instability of the working solution. Recently, one of the components of the working solution, Synperonic N, has ceased production, and the recommended replacement is Tween 20. This article addresses factors during PD processing using Tween 20, other than reagent formulations that should be considered when using the technique
An Adiabatic Theorem without a Gap Condition
The basic adiabatic theorems of classical and quantum mechanics are
over-viewed and an adiabatic theorem in quantum mechanics without a gap
condition is described.Comment: Talk at QMath 7, Prague, 1998. 10 pages, 7 figure
Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model
We have carried out Density Matrix Renormalization Group (DMRG) calculations
on the ground state of long polyacene oligomers within a Pariser-Parr-Pople
(PPP) Hamiltonian. The PPP model includes long-range electron correlations
which are required for physically realistic modeling of conjugated polymers. We
have obtained the ground state energy as a function of the dimerization
and various correlation functions and structure factors for
. From energetics, we find that while the nature of the Peierls'
instabilityin polyacene is conditional and strong electron correlations enhance
the dimerization. The {\it cis} form of the distortion is favoured over the
{\it trans} form. However, from the analysis of correlation functions and
associated structure factors, we find that polyacene is not susceptible to the
formation of a bond order wave (BOW), spin density wave (SDW) or a charge
density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure
Using atomic interference to probe atom-surface interaction
We show that atomic interference in the reflection from two suitably
polarized evanescent waves is sensitive to retardation effects in the
atom-surface interaction for specific experimental parameters. We study the
limit of short and long atomic de Broglie wavelength. The former case is
analyzed in the semiclassical approximation (Landau-Zener model). The latter
represents a quantum regime and is analyzed by solving numerically the
associated coupled Schroedinger equations. We consider a specific experimental
scheme and show the results for rubidium (short wavelength) and the much
lighter meta-stable helium atom (long wavelength). The merits of each case are
then discussed.Comment: 11 pages, including 6 figures, submitted to Phys. Rev. A, RevTeX
sourc
Rapid, label-free classification of glioblastoma differentiation status combining confocal Raman spectroscopy and machine learning
Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the
optimization of processing and interpretation of extensive data, such as various spectroscopy data
obtained from surgical samples. The here-described preclinical work investigates the potential of
machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated
glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid
measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point
measurements and sustainingly clustered cell components to predict tumor stem cell existence. By
further narrowing a few selected peaks, we found indicative evidence that using our computational
imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7%
in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular
heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease
modeling technology despite intracellular noise limitations for future translational evaluatio
Nuclear structure of 30S and its implications for nucleosynthesis in classical novae
The uncertainty in the 29P(p,gamma)30S reaction rate over the temperature
range of 0.1 - 1.3 GK was previously determined to span ~4 orders of magnitude
due to the uncertain location of two previously unobserved 3+ and 2+ resonances
in the 4.7 - 4.8 MeV excitation region in 30S. Therefore, the abundances of
silicon isotopes synthesized in novae, which are relevant for the
identification of presolar grains of putative nova origin, were uncertain by a
factor of 3. To investigate the level structure of 30S above the proton
threshold (4394.9(7) keV), a charged-particle spectroscopy and an in-beam
gamma-ray spectroscopy experiments were performed. Differential cross sections
of the 32S(p,t)30S reaction were measured at 34.5 MeV. Distorted wave Born
approximation calculations were performed to constrain the spin-parity
assignments of the observed levels. An energy level scheme was deduced from
gamma-gamma coincidence measurements using the 28Si(3He,n-gamma)30S reaction.
Spin-parity assignments based on measurements of gamma-ray angular
distributions and gamma-gamma directional correlation from oriented nuclei were
made for most of the observed levels of 30S. As a result, the resonance
energies corresponding to the excited states in 4.5 MeV - 6 MeV region,
including the two astrophysically important states predicted previously, are
measured with significantly better precision than before. The uncertainty in
the rate of the 29P(p,gamma)30S reaction is substantially reduced over the
temperature range of interest. Finally, the influence of this rate on the
abundance ratios of silicon isotopes synthesized in novae are obtained via 1D
hydrodynamic nova simulations.Comment: 22 pages, 12 figure
A new parametric equation of state and quark stars
It is still a matter of debate to understand the equation of state of cold
supra-nuclear matter in compact stars because of unknown on-perturbative strong
interaction between quarks. Nevertheless, it is speculated from an
astrophysical view point that quark clusters could form in cold quark matter
due to strong coupling at realistic baryon densities. Although it is hard to
calculate this conjectured matter from first principles, one can expect the
inter-cluster interaction to share some general features to nucleon-nucleon
interaction. We adopt a two-Gaussian component soft-core potential with these
general features and show that quark clusters can form stable simple cubic
crystal structure if we assume Gaussian form wave function. With this
parameterizing, Tolman-Oppenheimer-Volkoff equation is solved with reasonable
constrained parameter space to give mass-radius relation of crystalline solid
quark star. With baryon densities truncated at 2 times nuclear density at
surface and range of interaction fixed at 2fm we can reproduce similar
mass-radius relation to that obtained with bag model equations of state. The
maximum mass ranges from about 0.5 to 3 solar mass. Observed maximum pulsar
mass (about 2 solar mass) is then used to constrain parameters of this simple
interaction potential.Comment: 5 pages, 2 figure
- …