193 research outputs found

    Identification and simulation of extreme precipitation using a computationally inexpensive methodology

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 164-187).An examination of characteristics extreme precipitation in the greater Cape Town region is undertaken. Thereafter, an investigation into the characteristics of these changes is made using two approaches. The first is an empirical methodology to explore the historical attributes of extreme events and the second a numerical method. These are used to demonstrate an approach to produce high resolution forecasts of extreme precipitation if computational resources are scarce. Initially, changes in the characteristics of extreme precipitation in the greater Cape Town region is documented. Then self organizing maps are used to identify archetypal synoptic circulations that are associated with extreme precipitation over the region. Thereafter, days whose synoptic state matched those of the synoptic archetypes are simulated at a resolution of one kilometer to capture regional topographic modification of extreme precipitation. Following this, the simulated precipitation is validated against observed data and the model performance is assessed. These approaches were tested over Cape Town, South Africa which has complex topography where extreme rainfall is not well predicted. As this methodology is computationally relatively inexpensive, it has applicability to regions of the world where these resources are limited, more especially Africa where the state of climate science is poor. An analysis of historical station data from three locations in the greater Cape Town region showed mixed trends in extreme rainfall where extreme rainfall was taken as that in the 90th percentile. One station, located in the lee of topography, showed a statistically significant increase in the intensity of extreme rainfall and another, at a relatively topography-free location, a significant decrease. The third station showed no significant trend. Decadal changes in monthly precipitation show a shift in the start and end of the extreme rainfall season to starting later in winter and continuing into the early spring. The station with the significant increase in extreme rainfall intensity also showed an increase in 99th percentile rainfall intensity. Synoptic states associated with extreme rainfall in the greater Cape Town region were then examined. These were identified as mid-latitude cyclones with centers at relatively low latitudes. They were characterized by strong pressure gradients at the surface and in the upper air high as well as high regional humidities. Precipitation characteristics of the frontal systems ranged from precipitation that fell over a number of days in relatively low daily amounts to very heavy precipitation that fell in one day. Over the twenty-three year test period examined, there are change

    Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations

    Get PDF
    AbstractWe present a dataset of daily, bias-adjusted temperature and precipitation projections for continental Africa based on a large ensemble of regional climate model simulations, which can be useful for climate change impact studies in several sectors. We provide guidance on the benefits and caveats of using the dataset by investigating the effect of bias-adjustment on impact-relevant indices (both their future absolute value and change). Extreme threshold-based temperature indices show large differences between original and bias-adjusted values at the end of the century due to the general underestimation of temperature in the present climate. These results indicate that when biases are accounted for, projected risks of extreme temperature-related hazards are higher than previously found, with possible consequences for the planning of adaptation measures. Bias-adjusted results for precipitation indices are usually consistent with the original results, with the median change preserved for most regions and indices. The interquartile and full range of the original model ensemble is usually well preserved by bias-adjustment, with the exception of maximum daily precipitation, whose range is usually greatly reduced by the bias-adjustment. This is due to the poor simulation and extremely large model range for this index over the reference period; when the bias is reduced, most models converge in projecting a similar change. Finally, we provide a methodology to select a small subset of simulations that preserves the overall uncertainty in the future projections of the large model ensemble. This result can be useful in practical applications when process-based impact models are too expensive to be run with the full ensemble of model simulations

    The causes of avian extinction and rarity

    Get PDF
    Bibliography: pages 144-153.Biological extinction rates have escalated by as much as 1000 times the background extinction rate over the last 1500 years, causing concern over the long-term survival of many species. Avian extinctions since 1600 have been well documented relative to other taxa, as have current levels of avian threat. This study analyses avian extinctions post-1600 and current threats in an attempt to develop some predictive capacity about which avian taxa should be awarded the highest conservation priority. Analyses performed include examinations of the causes of avian extinction and threat, geographical location of extinct and threatened species, prehistoric and historical extinction rates, endemicity, migration, bird body size and phylogenetic diversity. An analysis dealing with historical and phylogenetic aspects of endangered and critically threatened species was performed, from which the world's most threatened species were identified. Factors which were the primary cause of historical extinctions are generally not the primary factors threatening today's extant avifauna. Whilst introduced predators and exploitation were primary causes of historical extinctions, habitat destruction poses the greatest threat to extant birds. Species predisposed to extinction typically have restricted ranges, and, compounded by habitat loss, these ranges are becoming more restricted. This has resulted in mainland-dwelling species becoming as prone to extinction as island-dwelling species have been historically. Introduced predators, however, do still threaten many of the world's most threatened species and their potential effects are highlighted in the phylogenetic analysis. Already, many extinctions may be inevitable over the next 25 years as a result of habitat loss. The magnitude of extinctions across all animal and plant species in the next few decades could be comparable with that of previous mass extinctions unless immediate conservation action is taken. However, future conservation efforts will have to be prioritized, and this study is intended as a contribution towards such a prioritization exercise

    Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa

    Get PDF
    West African rainfed agriculture is highly vulnerable to climate variability and change. Global warming is projected to result in higher regional warming and have a strong impact on agriculture. This study specifically examines the impact of global warming levels (GWLs) of 1.5°, 2° and 3 °C relative to 1971–2000 on crop suitability over West Africa. We used 10 Coupled Model Intercomparison Project Phase5 Global Climate Models (CMIP5 GCMs) downscaled by Coordinated Regional Downscaling Experiment (CORDEX) Rossby Centre’s regional Atmospheric model version 4, RCA4, to drive Ecocrop, a crop suitability model, for pearl millet, cassava, groundnut, cowpea, maize and plantain. The results show Ecocrop simulated crop suitability spatial representation with higher suitability, observed to the south of latitude 14°N and lower suitability to its north for 1971–2000 for all crops except for plantain (12°N). The model also simulates the best three planting months within the growing season from September-August over the past climate. Projected changes in crop suitability under the three GWLs 1.5–3.0 °C suggest a spatial suitability expansion for legume and cereal crops, notably in the central southern Sahel zone; root and tuber and plantain in the central Guinea-Savanna zone. In contrast, projected decreases in the crop suitability index value are predicted to the south of 14°N for cereals, root and tuber crops; nevertheless, the areas remain suitable for the crops. A delay of between 1-3 months is projected over the region during the planting month under the three GWLs for legumes, pearl millet and plantain. A two month delay in planting is projected in the south, notably over the Guinea and central Savanna zone with earlier planting of about three months in the Savanna-Sahel zones. The effect of GWL2.0 and GWL3.0 warming in comparison to GWL1.5 °C are more dramatic on cereals and root and tuber crops, especially cassava. All the projected changes in simulated crop suitability in response to climatic variables are statistically significant at 99% confidence level. There is also an increasing trend in the projected crop suitability change across the three warming except for cowpea. This study has implications for improving the resilience of crop production to climate changes, and more broadly, to food security in West Africa

    Climate change in South Africa: Risks and opportunities for climate-resilient development in the IPCC Sixth Assessment WGII Report

    Get PDF
    South Africa is wrestling with increasing climate change impacts and how to respond. The 2022 IPCC Working Group II Report synthesises the latest evidence on climate change impacts, vulnerability and adaptation, and what this means for climate-resilient development. In this commentary, South African authors on the Report reflect on its key findings and the implications for the country. The commentary highlights challenges and opportunities for cities, the food-water-energy-nature nexus, knowledge and capacity strengthening (which includes climate services, climate change literacy, and indigenous and local knowledge), climate finance, equity, justice and social protection, and climate-resilient development pathways. The piece closes with a reflection on research gaps requiring attention and the importance of urgently ramping up climate action to secure a liveable future for all South Africans

    “What if There's Something Wrong with Her?”‐How Biomedical Technologies Contribute to Epistemic Injustice in Healthcare

    Get PDF
    While there is a steadily growing literature on epistemic injustice in healthcare, there are few discussions of the role that biomedical technologies play in harming patients in their capacity as knowers. Through an analysis of newborn and pediatric genetic and genomic sequencing technologies (GSTs), I argue that biomedical technologies can lead to epistemic injustice through two primary pathways: epistemic capture and value partitioning. I close by discussing the larger ethical and political context of critical analyses of GSTs and their broader implications for just and equitable healthcare delivery
    • 

    corecore