863 research outputs found

    Fabrication of epitaxial CoSiâ‚‚ nanowires

    No full text
    We have developed a method for fabricatingepitaxialCoSiâ‚‚nanowires using only conventional optical lithography and standard silicon processing steps. This method was successfully applied to ultrathin epitaxialCoSiâ‚‚ layers grown on Si(100) and silicon-on-insulator substrates. A nitride mask induces a stress field near its edges into the CoSiâ‚‚/Siheterostructure and leads to the separation of the CoSiâ‚‚ layer in this region during a rapid thermal oxidation step. A subsequent etching step and a second oxidation generate highly homogenous silicide wires with dimensions down to 50 nm

    Nanopatterning of epitaxial CoSiâ‚‚ using oxidation in a local stress field and fabrication of nanometer metal-oxide-semiconductor field-effect transistors

    No full text
    A patterning method for the generation of epitaxialCoSi₂nanostructures was developed based on anisotropic diffusion of Co∕Si atoms in a stress field during rapid thermal oxidation (RTO). The stress field is generated along the edge of a mask consisting of a thin SiO₂ layer and a Si₃N₄ layer. During RTO of the masked silicide structure, a well-defined separation of the silicide layer forms along the edge of the mask. The technique was used to make 50-nm channel-length metal-oxide-semiconductor field-effect transistors(MOSFETs). These highly uniform gaps define the channel region of the fabricated device. Two types of MOSFETs have been fabricated: symmetric transistor structures, using the separated silicide layers as Schottky source and drain, and asymmetric transistors, with n+ source and Schottky drain. The asymmetric transistors were fabricated by an ion implantation into the unprotected CoSi₂ layer and a subsequent out diffusion to form the n+ source. The detailed fabrication process as well as the I–V characteristics of both the symmetric and asymmetric transistor structures will be presented

    Lattice gas model for fragmentation: From Argon on Scandium to Gold on Gold

    Get PDF
    The recent fragmentation data for central collisions of Gold on Gold are even qualitatively different from those for central collisions of Argon on Scandium. The latter can be fitted with a lattice gas model calculation. Effort is made to understand why the model fails for Gold on Gold. The calculation suggests that the large Coulomb interaction which is operative for the larger system is responsible for this discrepancy. This is demonstrated by mapping the lattice gas model to a molecular dynamics calculation for disassembly. This mapping is quite faithful for Argon on Scandium but deviates strongly for Gold on Gold. The molecular dynamics calculation for disassembly reproduces the characteristics of the fragmentation data for both Gold on Gold and Argon on Scandium.Comment: 13 pages, Revtex, 8 figures in ps files, submitted to Phys. Rev.

    Second Order Phase Transitions : From Infinite to Finite Systems

    Full text link
    We investigate the Equation of State (EOS) of classical systems having 300 and 512 particles confined in a box with periodic boundary conditions. We show that such a system, independently on the number of particles investigated, has a critical density of about 1/3 the ground state density and a critical temperature of about 2.5 MeV2.5~ MeV. The mass distribution at the critical point exhibits a power law with Ï„=2.23\tau = 2.23. Making use of the grand partition function of Fisher's droplet model, we obtain an analytical EOS around the critical point in good agreement with the one extracted from the numerical simulations.Comment: RevTex file, 17 pages + 9 figures available upon request from [email protected]

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Rα

    Get PDF
    Interleukins 2 and 15 (IL-2 and IL-15) are highly differentiated but related cytokines with overlapping, yet also distinct functions, and established benefits for medical drug use. The present study identified a gene for an ancient third IL-2/15 family member in reptiles and mammals, interleukin 15-like (IL-15L), which hitherto was only reported in fish. IL-15L genes with intact open reading frames (ORFs) and evidence of transcription, and a recent past of purifying selection, were found for cattle, horse, sheep, pig and rabbit. In human and mouse the IL-15L ORF is incapacitated. Although deduced IL-15L proteins share only ~21 % overall amino acid identity with IL-15, they share many of the IL-15 residues important for binding to receptor chain IL-15Rα, and recombinant bovine IL-15L was shown to interact with IL-15Rα indeed. Comparison of sequence motifs indicates that capacity for binding IL-15Rα is an ancestral characteristic of the IL-2/15/15L family, in accordance with a recent study which showed that in fish both IL-2 and IL-15 can bind IL-15Rα. Evidence reveals that the species lineage leading to mammals started out with three similar cytokines IL-2, IL-15 and IL-15L, and that later in evolution (1) IL-2 and IL-2Rα receptor chain acquired a new and specific binding mode and (2) IL-15L was lost in several but not all groups of mammals. The present study forms an important step forward in understanding this potent family of cytokines, and may help to improve future strategies for their application in veterinarian and human medicine

    Sens-o-Spheres – Mobile, miniaturisierte Sensorplattform für die ortsungebundene Prozessmessung in wässrigen Lösungen

    Get PDF
    Zur Prozessmessung in Flüssigkeiten wird ein Konzept vorgestellt, das mittels miniaturisierter Sensorkugeln eine ortsveränderliche Aufnahme von Prozessmesssignalen – z. B. der Temperatur – ermöglicht und diese kontinuierlich aus dem Reaktionsvolumen an eine Basisstation überträgt. Das System beinhaltet nicht nur die Miniaturisierung der Messstelle auf einen Kugeldurchmesser von 7,8 mm sondern auch die Abstimmung der Gesamtdichte auf die Prozessbedingungen, um eine gleichmäßige Verteilung der Messpunkte auf das gesamte Reaktionsvolumen zu ermöglichen. Für die Verwendung im Bioprozess wurde eine bio-inerte Kapselung für die gesamte Messelektronik entwickelt und die Funktionstüchtigkeit in mehreren Bioreaktorsystemen demonstriert. Das Messsystem wird mit einer induktiv wieder aufladbaren Energiequelle betrieben und hat eine Reichweite von mehr als 30 cm durch die Flüssigkeitssäule

    Larger Connection Radius Increases Hub Astrocyte Number in a 3D Neuron-Astrocyte Network Model

    Get PDF
    Astrocytes – a prominent glial cell type in the brain – form networks that tightly interact with the brain’s neuronal circuits. Thus, it is essential to study the modes of such interaction if we aim to understand how neural circuits process information. Thereby, calcium elevations, the primary signal in astrocytes, propagate to the adjacent neighboring cells and directly regulate neuronal communication. It is mostly unknown how the astrocyte network topology influences neuronal activity. Here, we used a computational model to simulate planar and 3D neuron-astrocyte networks with varying topologies. We investigated the number of active nodes, the shortest path, and the mean degree. Furthermore, we applied a graph coloring analysis that highlights the network organization between different network structures. With the increase of the maximum distance between two connected astrocytes, the information flow is more centralized to the most connected cells. Our results suggest that activity-dependent plasticity and the topology of brain areas might alter the amount of astrocyte controlled synapses

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include
    • …
    corecore