379 research outputs found

    Isolation and characterization of a gene for a major light-harvesting polypeptide from Cyanophora paradoxa

    Full text link

    The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z~3

    Get PDF
    We present the study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2<<z<<3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS). We measure the two-point real-space correlation function wp(rp)w_p(r_p) for four volume-limited stellar mass and four luminosity, MUV_{UV} absolute magnitude selected, sub-samples. We find that the scale dependent clustering amplitude r0r_0 significantly increases with increasing luminosity and stellar mass indicating a strong galaxy clustering dependence on these properties. This corresponds to a strong relative bias between these two sub-samples of Δ\Deltab/b^*=0.43. Fitting a 5-parameter HOD model we find that the most luminous and massive galaxies occupy the most massive dark matter haloes with \langleMh_h\rangle = 1012.30^{12.30} h1^{-1} M_{\odot}. Similar to the trends observed at lower redshift, the minimum halo mass Mmin_{min} depends on the luminosity and stellar mass of galaxies and grows from Mmin_{min} =109.73^{9.73} h1^{-1}M_{\odot} to Mmin_{min}=1011.58^{11.58} h1^{-1}M_{\odot} from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z~3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1_1\approx4Mmin_{min} over all luminosity ranges, significantly lower than observed at z~0 indicating that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large scale galaxy bias, which we model as bg,HOD_{g,HOD}(>>L)=1.92+25.36(L/L^*)7.01^{7.01}. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR).Comment: 20 pages, 11 figures, A&A in press, v2. revised discussion in sec. 5.5, changed Fig. 4 and Fig. 11, added reference

    Transposon-mediated gene search: finding a needle in a haystack

    Get PDF

    The Assembly of the Red Sequence at z ~ 1: The Color and Spectral Properties of Galaxies in the Cl1604 Supercluster

    Get PDF
    We investigate the properties of the 525 spectroscopically confirmed members of the Cl1604 supercluster at z ~ 0.9 as part of the Observations of Redshift Evolution in Large Scale Environments survey. In particular, we focus on the photometric, stellar mass, morphological, and spectral properties of the 305 member galaxies of the eight clusters and groups that comprise the Cl1604 supercluster. Using an extensive Keck Low-Resolution Imaging Spectrometer (LRIS)/DEep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic database in conjunction with ten-band ground-based, Spitzer, and Hubble Space Telescope imaging, we investigate the buildup of the red sequence in groups and clusters at high redshift. Nearly all of the brightest and most massive red-sequence galaxies present in the supercluster environment are found to lie within the bounds of the cluster and group systems, with a surprisingly large number of such galaxies present in low-mass group systems. Despite the prevalence of these red-sequence galaxies, we find that the average cluster galaxy has a spectrum indicative of a star-forming galaxy, with a star formation rate between those of z ~ 1 field galaxies and moderate-redshift cluster galaxies. The average group galaxy is even more active, exhibiting spectral properties indicative of a starburst. The presence of massive, red galaxies and the high fraction of starbursting galaxies present in the group environment suggest that significant processing is occurring in group environments at z ~ 1 and earlier. There is a deficit of low-luminosity red-sequence galaxies in all Cl1604 clusters and groups, suggesting that such galaxies transition to the red sequence at later times. Extremely massive (~10^(12)M_☉) red-sequence galaxies routinely observed in rich clusters at z ~ 0 are also absent from the Cl1604 clusters and groups. We suggest that such galaxies form at later times through merging processes. There are significant populations of transition galaxies at intermediate stellar masses (log(M_*)=10.25-10.75) present in the group and cluster environments, suggesting that this range is important for the buildup of the red-sequence mass function at z ~ 1. Through a comparison of the transitional populations present in the Cl1604 cluster and group systems, we find evidence that massive blue-cloud galaxies are quenched earliest in the most dynamically relaxed systems and at progressively later times in dynamically unrelaxed systems

    The Properties of Radio Galaxies and the Effect of Environment in Large Scale Structures at z1z\sim1

    Get PDF
    In this study we investigate 89 radio galaxies that are spectroscopically-confirmed to be members of five large scale structures in the redshift range of 0.65z0.960.65 \le z \le 0.96. Based on a two-stage classification scheme, the radio galaxies are classified into three sub-classes: active galactic nucleus (AGN), hybrid, and star-forming galaxy (SFG). We study the properties of the three radio sub-classes and their global and local environmental preferences. We find AGN hosts are the most massive population and exhibit quiescence in their star-formation activity. The SFG population has a comparable stellar mass to those hosting a radio AGN but are unequivocally powered by star formation. Hybrids, though selected as an intermediate population in our classification scheme, were found in almost all analyses to be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They are dominated by a high-excitation radio galaxy (HERG) population. We discuss environmental effects and scenarios for each sub-class. AGN tend to be preferentially located in locally dense environments and in the cores of clusters/groups, with these preferences persisting when comparing to galaxies of similar colour and stellar mass, suggesting that their activity may be ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit a strong preference for intermediate-density global environments, suggesting that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy interactions and merging.Comment: 28 pages, 10 figures, accepted to MNRA

    The DEEP2 Redshift Survey: Lyman Alpha Emitters in the Spectroscopic Database

    Full text link
    We present the first results of a search for Lyman-alpha emitters (LAEs) in the DEEP2 spectroscopic database that uses a search technique that is different from but complementary to traditional narrowband imaging surveys. We have visually inspected ~20% of the available DEEP2 spectroscopic data and have found nine high-quality LAEs with clearly asymmetric line profiles and an additional ten objects of lower quality, some of which may also be LAEs. Our survey is most sensitive to LAEs at z=4.4-4.9 and that is indeed where all but one of our high-quality objects are found. We find the number density of our spectroscopically-discovered LAEs to be consistent with those found in narrowband imaging searches. The combined, averaged spectrum of our nine high-quality objects is well fit by a two-component model, with a second, lower-amplitude component redshifted by ~420 km/s with respect to the primary Lyman-alpha line, consistent with large-scale outflows from these objects. We conclude by discussing the advantages and future prospects of blank-sky spectroscopic surveys for high-z LAEs.Comment: Accepted for publication in Ap

    Measuring the Stellar Masses of z~7 Galaxies with Spitzer Ultrafaint Survey Program (SURFS UP)

    Full text link
    We present Spitzer/IRAC observations of nine zz'-band dropouts highly magnified (2<mu<12) by the Bullet Cluster. We combine archival imaging with our Exploratory program (SURFS UP), which results in a total integration time of ~30 hr per IRAC band. We detect (>3sigma) in both IRAC bands the brightest of these high-redshift galaxies, with [3.6]=23.80+-0.28 mag, [4.5]=23.78+-0.25 mag, and (H-[3.6])=1.17+-0.32 mag. The remaining eight galaxies are undetected to [3.6]~26.4 mag and [4.5]~26.0 mag with stellar masses of ~5x10^7 M_sol. The detected galaxy has an estimated magnification of mu=12+-4, which implies this galaxy has an ultraviolet luminosity of L_1500~0.3 L*_{z=7} --- the lowest luminosity individual source detected in IRAC at z>7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star-formation rate of SFR~1.3 M_sol/yr and stellar mass of M~2x10^9 M_sol, which gives a specific star-formation rate of sSFR~0.7 Gyr^-1. If this galaxy had sustained this star-formation rate since z~20, it could have formed the observed stellar mass (to within a factor of ~2), we also discuss alternate star-formation histories and argue the exponentially-increasing model is unlikely. Finally, based on the intrinsic star-formation rate, we estimate this galaxy has a likely [C II] flux of = 10^{-17} erg/s/cm2.Comment: Accepted to ApJL. 6 pages, 3 figures, 2 table

    Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Get PDF
    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts (z>7.5z>7.5; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z>7.5z>7.5. We detected the Lyman-α\alpha emission line at 10504\sim 10504 {\AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescope's slit-less grism spectrograph, implying a source redshift of z=7.640±0.001z = 7.640 \pm 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z=0.545z = 0.545), with an estimated intrinsic luminosity of MAB=19.6±0.2M_{AB} = -19.6 \pm 0.2 mag and a stellar mass of M=3.00.8+1.5×108M_{\star} = 3.0^{+1.5}_{-0.8} \times 10^8 solar masses. Both are an order of magnitude lower than the four other Lyman-α\alpha emitters currently known at z>7.5z > 7.5, making it probably the most distant representative source of reionization found to date
    corecore