29 research outputs found

    Trends in computerized provider order entry: 20-year bibliometric overview

    Get PDF
    BackgroundDrug-related problems (DRPs) can lead to serious health issues and have significant economic impacts on healthcare systems. One solution to address this issue is the use of computerized physician order entry systems (CPOE), which can help prevent DRPs by reducing the risk of medication errors.ObjectiveThe purpose of this study is to provide an analysis on scientific production of the past 20 years in order to describe trends in academic publishing on CPOE and to identify the major topics as well as the predominant actors (journals, countries) involved in this field.MethodsA PubMed search was carried out to extract articles related to computerized provider order entry during the period January 1st 2003– December 31st 2022 using a specific query. Data were downloaded from PubMed in Extensible Markup Language (XML) and were processed through a dedicated parser.ResultsA total of 2,946 articles were retrieved among 623 journals. One third of these articles were published in eight journals. Publications grew strongly from 2002 to 2006, with a dip in 2008 followed by an increase again in 2009. After 2009, there follows a decreasing until 2022.The most producing countries are the USA with 51.39% of the publication over the period by France (3.80%), and Canada (3.77%). About disciplines, the top 3 is: “medical informatics” (21.62% of articles), “pharmacy” (19.04%), and “pediatrics” (6.56%).DiscussionThis study provides an overview of publication trends related to CPOE, which exhibited a significant increase in the first decade of the 21st century followed by a decline after 2009. Possible reasons for this decline include the emergence of digital health tools beyond CPOE, as well as healthcare professionals experiencing alert fatigue of the current system.ConclusionFuture research should focus on analyzing publication trends in the field of medical informatics and decision-making tools to identify other areas of interest that may have surpassed the development of CPOE

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation

    No full text
    International audienceMiscanthus, a potential energy crop grass, can be damaged by late frost when shoots emerge too early in the spring and during the first winter after planting. The effects of cold acclimation on cell wall composition were investigated in a frost-sensitive clone of Miscanthus x giganteus compared to frost-tolerant clone, Miscanthus sinensis August Feder, and an intermediate frost-tolerant clone, M. sinensis Goliath. Cellulose and lignin contents were higher in M. x giganteus than in the M. sinensis genotypes. In ambient temperature controls, each clone displayed different glucuronoarabinoxylan (GAX) contents and degree of arabinose substitution on the xylan backbone. During cold acclimation, an increase in (1 -> 3),(1 -> 4)-beta-D-glucan content was observed in all genotypes. Uronic acid level increased in the frost sensitive genotype but decreased in the frost tolerant genotypes in response to cold. In all clones, major changes in cell wall composition were observed with modifications in phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) activities in both non- and cold-acclimated experiments. A large increase in CAD activity under cold stress was displayed in each clone, but it was largest in the frost-tolerant clone, M. sinensis August Feder. The marked increase in PAL activity observed in the frost-tolerant clones under cold acclimation, suggests a reorientation of the products towards the phenylpropanoid pathway or aromatic synthesis. How changes in cell wall physical properties can impact frost tolerance is discussed. (C) 2012 Elsevier Ltd. All rights reserved

    Structural alteration of cell wall pectins accompanies pea development in response to cold

    No full text
    International audiencePea (Pisum sativum) cell wall metabolism in response to chilling was investigated in a frost-sensitive genotype 'Terese' and a frost-tolerant genotype 'Champagne'. Cell walls isolated from stipules of cold acclimated and non-acclimated plants showed that cold temperatures induce changes in polymers containing xylose, arabinose, galactose and galacturonic acid residues. In the tolerant cultivar Champagne, acclimation is accompanied by increases in homogalacturonan, xylogalacturonan and highly branched Rhamnogalacturonan I with branched and unbranched (1 -> 5)-alpha-arabinans and (1 -> 4)-beta-galactans. In contrast, the sensitive cultivar Terese accumulates substantial amounts of (1 -> 4)-beta-xylans and glucuronoxylan, but not the pectins. Greater JIM7 labeling was observed in Champagne compared to Terese, indicating that cold acclimation also induces an increase in the degree of methylesterification of pectins. Significant decrease in polygalacturonase activities in both genotypes were observed at the end of cold acclimation. These data indicate a role for esterified pectins in cold tolerance. The possible functions for pectins and their associated arabinans and galactans in cold acclimation are discussed

    Sentinel Lymph Node Biopsy in Cutaneous Squamous Cell Carcinoma Series of 37 Cases and Systematic Review of the Literature

    No full text
    Cutaneous squamous cell carcinoma (cSSC) is one of the most common skin cancers and can lead to patient death. Early detection of node metastasis is a major goal for dermatologists and oncologists. The procedure sentinel lymph node biopsy has been proposed to improve early detection of node metastasis. The aim of this study was to evaluate the efficacy and impact of this technique on the prognosis of cSSC. A total of 37 patients (Saint Louis Hospital, Paris, France) who had undergone sentinel lymph node biopsy and 290 cases from the literature were analysed. The mean rate of positive sentinel lymph node biopsy was 0.14 [95% CI 0.09–0.22]. However, relapse-free survival and overall survival were not affected by sentinel lymph node status (log-rank test; p = 0.08 and p = 0.31, respectively), suggesting that this procedure is not mandatory in the management of cSSC

    Low-Dose Pesticides Alter Primary Human Bone Marrow Mesenchymal Stem/Stromal Cells through ALDH2 Inhibition

    No full text
    International audience(1) Background: The impact of occupational exposure to high doses of pesticides on hematologic disorders is widely studied. Yet, lifelong exposure to low doses of pesticides, and more particularly their cocktail effect, although poorly known, could also participate to the development of such hematological diseases as myelodysplastic syndrome (MDS) in elderly patients. (2) Methods: In this study, a cocktail of seven pesticides frequently present in water and food (maneb, mancozeb, iprodione, imazalil, chlorpyrifos ethyl, diazinon and dimethoate), as determined by the European Food Safety Authority, were selected. Their in vitro effects at low-doses on primary BM-MSCs from healthy volunteers were examined. (3) Results: Exposure of normal BM-MSCs to pesticides for 21 days inhibited cell proliferation and promoted DNA damage and senescence. Concomitantly, these cells presented a decrease in aldehyde dehydrogenase 2 (ALDH2: mRNA, protein and enzymatic activity) and an increase in acetaldehyde levels. Pharmacological inhibition of ALDH2 with disulfiram recapitulated the alterations induced by exposure to low doses of pesticides. Moreover, BM-MSCs capacity to support primitive hematopoiesis was significantly altered. Similar biological abnormalities were found in primary BM-MSCs derived from MDS patients. (4) Conclusions: these results suggest that ALDH2 could participate in the pathophysiology of MDS in elderly people long exposed to low doses of pesticides

    Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability

    No full text
    Abstract Nonsense-mediated mRNA decay (NMD) is responsible for the degradation of mRNAs with a premature termination codon (PTC). The role of this system in cancer is still quite poorly understood. In the present study, we evaluated the functional consequences of NMD activity in a subgroup of colorectal cancers (CRC) characterized by high levels of mRNAs with a PTC due to widespread instability in microsatellite sequences (MSI). In comparison to microsatellite stable (MSS) CRC, MSI CRC expressed increased levels of two critical activators of the NMD system, UPF1/2 and SMG1/6/7. Suppression of NMD activity led to the re-expression of dozens of PTC mRNAs. Amongst these, several encoded mutant proteins with putative deleterious activity against MSI tumorigenesis (e.g., HSP110DE9 chaperone mutant). Inhibition of NMD in vivo using amlexanox reduced MSI tumor growth, but not that of MSS tumors. These results suggest that inhibition of the oncogenic activity of NMD may be an effective strategy for the personalized treatment of MSI CRC
    corecore