165 research outputs found
Performance analysis and helium behaviour of Am-bearing fuel pins for irradiation in the MYRRHA reactor
Minor actinides are the main contributors to medium- and long-term radiotoxicity and heat production in spent nuclear fuels. Research efforts are currently ongoing to explore different options to dispose of such radionuclides, e.g., their burning in fast reactors within mixed-oxide fuels. The MYRRHA sub-critical reactor is one of the future facilities with envisaged burning and transmutation capabilities. This work assesses the thermal–mechanical performance of a homogeneous Am-bearing fuel pin both in the In-Pile test Section position of the MYRRHA “Revision 1.8” core and under driver irradiation. The normal operating conditions of MYRRHA are considered, with a focus on the safety design limits and involving sensitivity analyses to evaluate the impact of increasing americium contents (in the range 0–5 wt%) on safety-relevant simulation outcomes. The simulations are performed with the TRANSURANUS fuel performance code (version v1m4j22) coupled with the
SCIANTIX physics-based module for inert gas behaviour, and rely on a dedicated surrogate model for the helium source term during MYRRHA irradiation accounting for the relevant contribution of the fuel americium enrichment, besides advanced models for the properties and behaviour of the specific pin materials. The analyses reveal the suitability and safety under irradiation of MOX fuels with low Am enrichments according to the current MYRRHA design
Effect of hydrogen gas and leaching solution on the fast release of fission products from two PWR fuels
To study the dissolution of UOX spent nuclear fuel in a deep geological environment and the fast release of a selection of relevant radionuclides for long-term safety of this high level waste, leaching experiments were performed with spent nuclear fuel samples originating from the pressurized water reactors (PWRs) Tihange 1 and Gösgen with a similar burnup (50 – 55 MWd.kgHM−1) but different irradiation histories. Six experiments were conducted to investigate the effect of two critical parameters: (1) the highly alkaline environment caused by the presence of cementitious materials in the “Supercontainer design”, which is currently the reference design for the long-term management of the high-level nuclear waste forms in Belgium, and (2) the reducing conditions imposed by the presence of hydrogen from the corrosion of iron-based materials present in the engineered barriers. The experiments were performed using autoclaves under pressure from 1 to 40 bar with a pure Ar atmosphere or a mixture of H2/Ar. Divided into two consecutive phases, the total experimental duration was about 1400 days. The Phase I provided mainly information about the fast release of the fission products while the perspective of the Phase II was to study the long-term evolution of the spent fuel matrix. During the leaching experiment, concentrations of a selection of radionuclides (238U, 129I, 137Cs, 90Sr and 99Tc) were monitored in solution and the amounts of Kr and Xe were measured in the gas phase. Based on results of the experiments conducted for up to 40 months (i.e. during Phase I of the experimental program), we observe that there is a continuous release of 137Cs, 90Sr and of the fission gases and a clear impact of the irradiation history on the release of certain fission products
On the scent of sexual attraction
A study in the current issue of BMC Biology has identified a mouse major urinary protein as a pheromone that attracts female mice to male urine marks and induces a learned attraction to the volatile urinary odor of the producer. See research article http://www.biomedcentral.com/1741-7007/8/7
A Recent Class of Chemosensory Neurons Developed in Mouse and Rat
In most animal species, the vomeronasal organ ensures the individual recognition of conspecifics, a prerequisite for a successful reproduction. The vomeronasal organ expresses several receptors for pheromone detection. Mouse vomeronasal type-2 receptors (V2Rs) are restricted to the basal neurons of this organ and organized in four families. Family-A, B and D (family ABD) V2Rs are expressed monogenically (one receptor per neuron) and coexpress with either Vmn2r1 or Vmn2r2, two members of family-C V2Rs. Thus, basal neurons are characterized by specific combinations of two V2Rs. To investigate this issue, we raised antibodies against all family-C V2Rs and analyzed their expression pattern. We found that six out of seven family-C V2Rs (Vmn2r2-7) largely coexpressed and that none of the anti-Vmn2r2-7 antibodies significantly stained Vmn2r1 positive neurons. Thus, basal neurons are divided into two complementary subsets. The first subset (Vmn2r1-positive) preferentially coexpresses a distinct group of family-ABD V2Rs, whereas the second subset (Vmn2r2-7-positive) coexpresses the remaining group of V2Rs. Phylogenetic reconstruction and the analysis of genetic loci in various species reveal that receptors expressed by this second neuronal subset are recent branches of the V2R tree exclusively present in mouse and rat. Conversely, V2Rs expressed in Vmn2r1 positive neurons, are phylogenetically ancient and found in most vertebrates including rodents. Noticeably, the more recent neuronal subset expresses a type of Major Histocompatibility Complex genes only found in murine species. These results indicate that the expansion of the V2R repertoire in a murine ancestor occurred with the establishment of a new population of vomeronasal neurons in which coexists the polygenic expression of a recent group of family-C V2Rs (Vmn2r2-7) and the monogenic expression of a recent group of family-ABD V2Rs. This evolutionary innovation could provide a molecular rationale for the exquisite ability in individual recognition and mate choice of murine species
Heritability of Attractiveness to Mosquitoes
Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development
Cyclic Nucleotide-Gated Channels Contribute to Thromboxane A2-Induced Contraction of Rat Small Mesenteric Arteries
Background: Thromboxane A 2 (TxA 2)-induced smooth muscle contraction has been implicated in cardiovascular, renal and respiratory diseases. This contraction can be partly attributed to TxA2-induced Ca 2+ influx, which resulted in vascular contraction via Ca 2+-calmodulin-MLCK pathway. This study aims to identify the channels that mediate TxA2-induced Ca 2+ influx in vascular smooth muscle cells. Methodology/Principal Findings: Application of U-46619, a thromboxane A2 mimic, resulted in a constriction in endothelium-denuded small mesenteric artery segments. The constriction relies on the presence of extracellular Ca 2+, because removal of extracellular Ca 2+ abolished the constriction. This constriction was partially inhibited by an L-type Ca 2+ channel inhibitor nifedipine (0.5–1 mM). The remaining component was inhibited by L-cis-diltiazem, a selective inhibitor for CNG channels, in a dose-dependent manner. Another CNG channel blocker LY83583 [6-(phenylamino)-5,8-quinolinedione] had similar effect. In the primary cultured smooth muscle cells derived from rat aorta, application of U46619 (100 nM) induced a rise in cytosolic Ca 2+ ([Ca 2+]i), which was inhibited by L-cis-diltiazem. Immunoblot experiments confirmed the presence of CNGA2 protein in vascular smooth muscle cells. Conclusions/Significance: These data suggest a functional role of CNG channels in U-46619-induced Ca 2+ influx and contraction of smooth muscle cells
Analysis of Male Pheromones That Accelerate Female Reproductive Organ Development
Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified
Using fMRI to localize target regions for implanted brain-computer interfaces in locked-in syndrome
OBJECTIVE: Electrocorticography (ECoG)-based brain-computer interface (BCI) systems have the potential to improve quality of life of people with locked-in syndrome (LIS) by restoring their ability to communicate independently. Before implantation of such a system, it is important to localize ECoG electrode target regions. Here, we assessed the predictive value of functional magnetic resonance imaging (fMRI) for the localization of suitable target regions on the sensorimotor cortex for ECoG-based BCI in people with locked-in syndrome. METHODS: Three people with locked-in syndrome were implanted with a chronic, fully implantable ECoG-BCI system. We compared pre-surgical fMRI activity with post-implantation ECoG activity from areas known to be active and inactive during attempted hand movement (sensorimotor hand region and dorsolateral prefrontal cortex, respectively). RESULTS: Results showed a spatial match between fMRI activity and changes in ECoG low and high frequency band power (10 - 30 and 65 - 95 Hz, respectively) during attempted movement. Also, we found that fMRI can be used to select a sub-set of electrodes that show strong task-related signal changes that are therefore likely to generate adequate BCI control. CONCLUSIONS: Our findings indicate that fMRI is a useful non-invasive tool for the pre-surgical workup of BCI implant candidates. SIGNIFICANCE: If these results are confirmed in more BCI studies, fMRI might be used for more efficient surgical BCI procedures with focused cortical coverage and lower participant burden
Limits of Calcium Clearance by Plasma Membrane Calcium ATPase in Olfactory Cilia
BACKGROUND: In any fine sensory organelle, a small influx of Ca(2+) can quickly elevate cytoplasmic Ca(2+). Mechanisms must exist to clear the ciliary Ca(2+) before it reaches toxic levels. One such organelle has been well studied: the vertebrate olfactory cilium. Recent studies have suggested that clearance from the olfactory cilium is mediated in part by plasma membrane Ca(2+)-ATPase (PMCA). PRINCIPAL FINDINGS: In the present study, electrophysiological assays were devised to monitor cytoplasmic free Ca(2+) in single frog olfactory cilia. Ca(2+) was allowed to enter isolated cilia, either through the detached end or through membrane channels. Intraciliary Ca(2+) was monitored via the activity of ciliary Ca(2+)-gated Cl(-) channels, which are sensitive to free Ca(2+) from about 2 to 10 microM. No significant effect of MgATP on intraciliary free Ca(2+) could be found. Carboxyeosin, which has been used to inhibit PMCA, was found to substantially increase a ciliary transduction current activated by cyclic AMP. This increase was ATP-independent. CONCLUSIONS: Alternative explanations are suggested for two previous experiments taken to support a role for PMCA in ciliary Ca(2+) clearance. It is concluded that PMCA in the cilium plays a very limited role in clearing the micromolar levels of intraciliary Ca(2+) produced during the odor response
- …