22,180 research outputs found

    Generalizations of the Familywise Error Rate

    Full text link
    Consider the problem of simultaneously testing null hypotheses H_1,...,H_s. The usual approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. In many applications, particularly if s is large, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of the procedure to detect false null hypotheses. This suggests replacing control of the FWER by controlling the probability of k or more false rejections, which we call the k-FWER. We derive both single-step and stepdown procedures that control the k-FWER, without making any assumptions concerning the dependence structure of the p-values of the individual tests. In particular, we derive a stepdown procedure that is quite simple to apply, and prove that it cannot be improved without violation of control of the k-FWER. We also consider the false discovery proportion (FDP) defined by the number of false rejections divided by the total number of rejections (defined to be 0 if there are no rejections). The false discovery rate proposed by Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B 57 (1995) 289-300] controls E(FDP). Here, we construct methods such that, for any \gamma and \alpha, P{FDP>\gamma}\le\alpha. Two stepdown methods are proposed. The first holds under mild conditions on the dependence structure of p-values, while the second is more conservative but holds without any dependence assumptions.Comment: Published at http://dx.doi.org/10.1214/009053605000000084 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The aerodynamic effects of wing–wing interaction in flapping insect wings

    Get PDF
    We employed a dynamically scaled mechanical model of the small fruit fly Drosophila melanogaster (Reynolds number 100–200) to investigate force enhancement due to contralateral wing interactions during stroke reversal (the 'clap-and-fling'). The results suggest that lift enhancement during clap-and-fling requires an angular separation between the two wings of no more than 10–12°. Within the limitations of the robotic apparatus, the clap-and-fling augmented total lift production by up to 17%, but depended strongly on stroke kinematics. The time course of the interaction between the wings was quite complex. For example, wing interaction attenuated total force during the initial part of the wing clap, but slightly enhanced force at the end of the clap phase. We measured two temporally transient peaks of both lift and drag enhancement during the fling phase: a prominent peak during the initial phase of the fling motion, which accounts for most of the benefit in lift production, and a smaller peak of force enhancement at the end fling when the wings started to move apart. A detailed digital particle image velocimetry (DPIV) analysis during clap-and-fling showed that the most obvious effect of the bilateral 'image' wing on flow occurs during the early phase of the fling, due to a strong fluid influx between the wings as they separate. The DPIV analysis revealed, moreover, that circulation induced by a leading edge vortex (LEV) during the early fling phase was smaller than predicted by inviscid two-dimensional analytical models, whereas circulation of LEV nearly matched the predictions of Weis-Fogh's inviscid model at late fling phase. In addition, the presence of the image wing presumably causes subtle modifications in both the wake capture and viscous forces. Collectively, these effects explain some of the changes in total force and lift production during the fling. Quite surprisingly, the effect of clap-and-fling is not restricted to the dorsal part of the stroke cycle but extends to the beginning of upstroke, suggesting that the presence of the image wing distorts the gross wake structure throughout the stroke cycle

    Public Health and Epidemiology Informatics: Recent Research and Trends in the United States

    Get PDF
    Objectives To survey advances in public health and epidemiology informatics over the past three years. Methods We conducted a review of English-language research works conducted in the domain of public health informatics (PHI), and published in MEDLINE between January 2012 and December 2014, where information and communication technology (ICT) was a primary subject, or a main component of the study methodology. Selected articles were synthesized using a thematic analysis using the Essential Services of Public Health as a typology. Results Based on themes that emerged, we organized the advances into a model where applications that support the Essential Services are, in turn, supported by a socio-technical infrastructure that relies on government policies and ethical principles. That infrastructure, in turn, depends upon education and training of the public health workforce, development that creates novel or adapts existing infrastructure, and research that evaluates the success of the infrastructure. Finally, the persistence and growth of infrastructure depends on financial sustainability. Conclusions Public health informatics is a field that is growing in breadth, depth, and complexity. Several Essential Services have benefited from informatics, notably, “Monitor Health,” “Diagnose & Investigate,” and “Evaluate.” Yet many Essential Services still have not yet benefited from advances such as maturing electronic health record systems, interoperability amongst health information systems, analytics for population health management, use of social media among consumers, and educational certification in clinical informatics. There is much work to be done to further advance the science of PHI as well as its impact on public health practice

    Link communities reveal multiscale complexity in networks

    Full text link
    Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.Comment: Main text and supplementary informatio

    Robustness and modular structure in networks

    Get PDF
    Complex networks have recently attracted much interest due to their prevalence in nature and our daily lives [1, 2]. A critical property of a network is its resilience to random breakdown and failure [3-6], typically studied as a percolation problem [7-9] or by modeling cascading failures [10-12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates. If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory.Comment: 14 pages, 9 figure

    Chandra Observations of Six QSOs at z \approx 3

    Full text link
    We report the results of our Chandra observations of six QSOs at z3z\sim 3 from the Palomer Transit Grism Survey. Our primary goal is to investigate the possible systematic change of αox\alpha_{ox} between z>4z>4 and z3z\sim 3, between which a rapid rise of luminous QSO number density with cosmic time is observed. The summed spectrum showed a power-law spectrum with photon index of Γ1.9\Gamma \approx 1.9, which is similar to other unabsorbed AGNs. Combining our z3z\sim 3 QSOs with X-ray observations of QSOs at z>4z>4 from literaure/archive, we find a correlation of αox\alpha_{\rm ox} with optical luminosity. This is consistent with the fact that the luminosity function slope of the luminous end of the X-ray selected QSOs is steeper than that of optically-selected QSOs. We discuss an upper limit to the redshift dependence of αox\alpha_{ox} using a Monte-Carlo simulation. Within the current statistical errors including the derived limits on the redshift dependence of αox\alpha_{\rm ox}, we found that the behaviors of the X-ray and optically-selected QSO number densities are consistent with each other.Comment: 13 Pages, 3 Figures, Astronomical Journal in press, An entry in Table 2 corrected--Log Lx for PC 1000+4751 from 44.0 (incorrect) to 45.0 (correct). A few minor errors correcte

    On Optimality of Stepdown and Stepup Multiple Test Procedures

    Full text link
    Consider the multiple testing problem of testing k null hypotheses, where the unknown family of distributions is assumed to satisfy a certain monotonicity assumption. Attention is restricted to procedures that control the familywise error rate in the strong sense and which satisfy a monotonicity condition. Under these assumptions, we prove certain maximin optimality results for some well-known stepdown and stepup procedures.Comment: Published at http://dx.doi.org/10.1214/009053605000000066 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    In situ mineralogical-chemical analysis of Martian materials at landing/roving sites by active and passive remote sensing methods

    Get PDF
    Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates
    corecore