54,793 research outputs found

    Avoidance maneuevers selected while viewing cockpit traffic displays

    Get PDF
    Ten airline pilots rates the collision danger of air traffic presented on cockpit displays of traffic information while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threst situations pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's own ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilots' turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft

    Limb-darkening functions as derived from along-track operation of the ERBE scanning radiometers for August 1985

    Get PDF
    During August 1985, the scanning radiometers of the Earth Radiation Budget Experiment aboard the Earth Radiation Budget Satellite (ERBS) and the NOAA-9 satellite were operated in along-track scanning modes. These data were analyzed to produce limb darkening functions for Earth-emitted radiation, which relates the radiance in any given direction to the radiant exitence. Limb darkening functions are presented and shown as figures for day and night for each spacecraft. The scene types were computed using measurements within 10 deg of zenith. The models have values near zenith of 1.02 to 1.09, with values near 1.06 being typical. The typical value of the model is 1.06 for both day and night for ERBS, and for NOAA-9, the typical value at zenith is 1.06 for day and 1.05 for night. Mean models are formed for the ERBS and for the NOAA-9 results and are found to differ less than 1 percent, the ERBS results being the higher. The models vary about 1 percent with latitude near zenith

    Peer review and citation data in predicting university rankings, a large-scale analysis

    Get PDF
    Most Performance-based Research Funding Systems (PRFS) draw on peer review and bibliometric indicators, two different method- ologies which are sometimes combined. A common argument against the use of indicators in such research evaluation exercises is their low corre- lation at the article level with peer review judgments. In this study, we analyse 191,000 papers from 154 higher education institutes which were peer reviewed in a national research evaluation exercise. We combine these data with 6.95 million citations to the original papers. We show that when citation-based indicators are applied at the institutional or departmental level, rather than at the level of individual papers, surpris- ingly large correlations with peer review judgments can be observed, up to r <= 0.802, n = 37, p < 0.001 for some disciplines. In our evaluation of ranking prediction performance based on citation data, we show we can reduce the mean rank prediction error by 25% compared to previous work. This suggests that citation-based indicators are sufficiently aligned with peer review results at the institutional level to be used to lessen the overall burden of peer review on national evaluation exercises leading to considerable cost savings

    170 Nanometer Nuclear Magnetic Resonance Imaging using Magnetic Resonance Force Microscopy

    Get PDF
    We demonstrate one-dimensional nuclear magnetic resonance imaging of the semiconductor GaAs with 170 nanometer slice separation and resolve two regions of reduced nuclear spin polarization density separated by only 500 nanometers. This is achieved by force detection of the magnetic resonance, Magnetic Resonance Force Microscopy (MRFM), in combination with optical pumping to increase the nuclear spin polarization. Optical pumping of the GaAs creates spin polarization up to 12 times larger than the thermal nuclear spin polarization at 5 K and 4 T. The experiment is sensitive to sample volumes containing 4×1011\sim 4 \times 10^{11} 71^{71}Ga/Hz/\sqrt{Hz}. These results demonstrate the ability of force-detected magnetic resonance to apply magnetic resonance imaging to semiconductor devices and other nanostructures.Comment: Submitted to J of Magnetic Resonanc
    corecore