1,148 research outputs found

    Long-term Solar Irradiance Variability: 1984-1989 Observations

    Get PDF
    Long-term variability in the total solar irradiance has been observed in the Earth Radiation Budget Experiment (ERBE) solar monitor measurements. The monitors have been used to measure the irradiance from the Earth Radiation Budget Satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft platforms since October 25, 1984, January 23, 1985, and October 22, 1986, respectively. Before September 1986, the ERBS irradiance values were found to be decreasing -0.03 percent per year. This period was marked by decreasing solar magnetic activity. Between September 1986 and mid-1989, the irradiance values increased approximately 0.1 percent. The latter period was marked by increasing solar activity which was associated with the initiations of the sunspot cycle number 22 and of a new 22-year Hale solar magnetic cycle. Therefore, long-term solar-irradiance variability appears to be correlated directly with solar activity. The maximum smoothed sunspot number occurred during September 1989, according to the Sunspot Index Data Center. Therefore, the recent irradiance increasing trend should disappear during early 1990 and change into a decreasing trend if the observed irradiance variability is correlated more so with the 11-year sunspot cycle than the 22-year Hale cycle. The ERBE irradiance values are presented and compared with sunspot activity for the 1984 to 1989 period. The ERBE values are compared with those available from the Nimbus-7 and Solar Maximum Mission spacecraft experiments

    Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror

    Get PDF
    Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation

    Solar Constant Data from Earth Radiation Budget Measurements

    Get PDF
    At present, solar total irradiance measurements are made from four satellites using electrically self calibrating pyrheliometers, as a part of the earth radiation budget measurement programs. The Earth Radiation Budget (ERB) mission onboard Nimbus-7 spacecraft (Nimbus/ERB) started solar total irradiance measurements in November 1978, and is still obtaining irradiance data on every orbit, daily. The Earth Radiation Budget Experiment (ERBE) solar monitors onboard Earth Radiation Budget Satellite (ERBS), NOAA-9 and NOAA-10 started solar total irradiance measurements in October 1984, January 1985, and October 1986, respectively. Our knowledge of solar total irradiance and its variability has grown remarkably during the past few years, as a result of the above measurements, and the high precision data obtained from Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor-1 (SMM/ACRIM-1). The results from a comparative study of the solar constant data available from the above missions are presented. The solar constant value derived from the sensors agree within the uncertainty associated with absolute pyrheliometers available at present. An attempt will be made to correlate the solar irradiance variability with other solar parameters. The measurements from Nimbus-7/ERB started November 1978, as the solar cycle 21 was increasing in activity. The solar luminosity reached a maximum in the spring of 1979. The irradiance then decreased slowly to a minimum which lasted from 1984 through 1986. The irradiance is presently increasing towards a new maximum. It appears that the solar constant value follow an eleven year cycle

    The Feigned Annoyance and Frustration Test to Activate the Sympathoadrenal Medullary System

    Get PDF
    When perceived as threatening, social interactions have been shown to trigger the sympathoadrenal medullary system as well as the hypothalamic-pituitary-adrenal axis resulting in a physiologic stress response. The allostatic load placed on human health and physiology in the context of acute and chronic stress can have profound health consequences. The purpose of this study was to develop a protocol for a lab-based stress stimulus using social-evaluative threat. While several valid, stress-stimulating protocols exist, we sought to develop one that triggered a physiologic response, did not require significant lab resources, and could be completed in around 10 min. We included 53 participants (29 men and 24 women) and exposed them to a modified version of the Stroop Color-Word Interference Task during which the participants were made to feel they were performing the task poorly while the lead researcher feigned annoyance and frustration. After exposure to this Feigned Annoyance and Frustration (FAF) Test, both the men and women in this study demonstrated a statistically significant and clinically meaningful increase in subjective stress on the visual analog scale. Additionally, the men in this study demonstrated a statistically significant increase in heart rate and salivary α-amylase concentrations after exposure to the test. The women in this study did not demonstrate a statistically significant increase in the physiologic stress biomarkers. This protocol for the FAF Test shows promise to researchers with limited time and resources who are interested in experimentally activating the sympathoadrenal medullary system

    Non-Scanning Radiometer Results for Earth Radiation Budget Investigations

    Get PDF
    The Earth Radiation Budget Experiment (ERBE) included non-scanning radiometers (Luther, 1986) flown aboard a dedicated mission of Earth Radiation Budget Satellite, and the NOAA-9 and -10 operational meteorological spacecraft (Barkstrom and Smith, 1986). The radiometers first began providing Earth radiation budget data in November 1984 and have remained operational, providing a record of nearly 8 years of data to date for researchers. Although they do not produce measurements with the resolution given by the scanning radiometers, the results from the non-scanning radiometers are extremely useful for climate research involving long-term radiation data sets. This paper discusses the non-scanning radiometers, their stability, the method of analyzing the data, and brief scientific results from the data

    Computational Sensitivity Investigation of Hydrogel Injection Characteristics for Myocardial Support

    Get PDF
    Biomaterial injection is a potential new therapy for augmenting ventricular mechanics after myocardial infarction (MI). Recent in vivo studies have demonstrated that hydrogel injections can mitigate the adverse remodeling due to MI. More importantly, the material properties of these injections influence the efficacy of the therapy. The goal of the current study is to explore the interrelated effects of injection stiffness and injection volume on diastolic ventricular wall stress and thickness. To achieve this, finite element models were constructed with different hydrogel injection volumes (150 µL and 300 µL), where the modulus was assessed over a range of 0.1 kPa to 100 kPa (based on experimental measurements). The results indicate that a larger injection volume and higher stiffness reduce diastolic myofiber stress the most, by maintaining the wall thickness during loading. Interestingly, the efficacy begins to taper after the hydrogel injection stiffness reaches a value of 50 kPa. This computational approach could be used in the future to evaluate the optimal properties of the hydrogel

    Fecal Coliform Bacteria TMDL Implementation on Cane Creek and Little Cane Creek in Oconee County, South Carolina

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget

    Unsupervised Bayesian linear unmixing of gene expression microarrays

    Get PDF
    Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor
    corecore