69 research outputs found

    The sedimentology, stratigraphy, and paleontology of the Lower Jurassic Portland Formation, Hartford Basin, central Connecticut

    Get PDF
    Guidebook for field trips in Connecticut and adjacent areas of New York and Rhode Island: New England Intercollegiate Geological Conference 77th annual meeting, Yale University, New Haven, Connecticut, October 4-6, 1985: Trip B

    Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes In Rhizosphere \u3ci\u3ePseudomonas\u3c/i\u3e

    Get PDF
    Plants live in association with microorganisms that positively influence plant development, vigor, and fitness in response to pathogens and abiotic stressors. The bulk of the plant microbiome is concentrated belowground at the plant root-soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and secondary low molecular weight metabolites, lysates, and mucilages. These exudates provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by focusing on the molecular dialog between eight well-characterized beneficial strains of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for economically important food, feed, forage, and biomass crops of the grass family. We collected and analyzed root exudates of B. distachyon and demonstrated the presence of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many of these metabolites provide carbon and energy for the Pseudomonas strains. RNA-seq profiling of bacterial cultures amended with root exudates revealed changes in the expression of genes encoding numerous catabolic and anabolic enzymes, transporters, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost half of the differentially expressed genes mapped to the variable part of the strains’ pangenome, reflecting the importance of the variable gene content in the adaptation of P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity of cellular pathways and physiological responses underlying the establishment of mutualistic interactions between these beneficial rhizobacteria and their plant hosts

    Effects of Local and Landscape Factors on Population Dynamics of a Cotton Pest

    Get PDF
    BACKGROUND: Many polyphagous pests sequentially use crops and uncultivated habitats in landscapes dominated by annual crops. As these habitats may contribute in increasing or decreasing pest density in fields of a specific crop, understanding the scale and temporal variability of source and sink effects is critical for managing landscapes to enhance pest control. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated how local and landscape characteristics affect population density of the western tarnished plant bug, Lygus hesperus (Knight), in cotton fields of the San Joaquin Valley in California. During two periods covering the main window of cotton vulnerability to Lygus attack over three years, we examined the associations between abundance of six common Lygus crops, uncultivated habitats and Lygus population density in these cotton fields. We also investigated impacts of insecticide applications in cotton fields and cotton flowering date. Consistent associations observed across periods and years involved abundances of cotton and uncultivated habitats that were negatively associated with Lygus density, and abundance of seed alfalfa and cotton flowering date that were positively associated with Lygus density. Safflower and forage alfalfa had variable effects, possibly reflecting among-year variation in crop management practices, and tomato, sugar beet and insecticide applications were rarely associated with Lygus density. Using data from the first two years, a multiple regression model including the four consistent factors successfully predicted Lygus density across cotton fields in the last year of the study. CONCLUSIONS/SIGNIFICANCE: Our results show that the approach developed here is appropriate to characterize and test the source and sink effects of various habitats on pest dynamics and improve the design of landscape-level pest management strategies

    Intra- and Inter-clade Cross-reactivity by HIV-1 Gag Specific T-Cells Reveals Exclusive and Commonly Targeted Regions: Implications for Current Vaccine Trials

    Get PDF
    The genetic diversity of HIV-1 across the globe is a major challenge for developing an HIV vaccine. To facilitate immunogen design, it is important to characterize clusters of commonly targeted T-cell epitopes across different HIV clades. To address this, we examined 39 HIV-1 clade C infected individuals for IFN-γ Gag-specific T-cell responses using five sets of overlapping peptides, two sets matching clade C vaccine candidates derived from strains from South Africa and China, and three peptide sets corresponding to consensus clades A, B, and D sequences. The magnitude and breadth of T-cell responses against the two clade C peptide sets did not differ, however clade C peptides were preferentially recognized compared to the other peptide sets. A total of 84 peptides were recognized, of which 19 were exclusively from clade C, 8 exclusively from clade B, one peptide each from A and D and 17 were commonly recognized by clade A, B, C and D. The entropy of the exclusively recognized peptides was significantly higher than that of commonly recognized peptides (p = 0.0128) and the median peptide processing scores were significantly higher for the peptide variants recognized versus those not recognized (p = 0.0001). Consistent with these results, the predicted Major Histocompatibility Complex Class I IC50 values were significantly lower for the recognized peptide variants compared to those not recognized in the ELISPOT assay (p<0.0001), suggesting that peptide variation between clades, resulting in lack of cross-clade recognition, has been shaped by host immune selection pressure. Overall, our study shows that clade C infected individuals recognize clade C peptides with greater frequency and higher magnitude than other clades, and that a selection of highly conserved epitope regions within Gag are commonly recognized and give rise to cross-clade reactivities

    A global assessment of market accessibility and market influence for global environmental change studies

    Get PDF
    Markets influence the global patterns of urbanization, deforestation, agriculture and other land use systems. Yet market influence is rarely incorporated into spatially explicit global studies of environmental change, largely because consistent global data are lacking below the national level. Here we present the first high spatial resolution gridded data depicting market influence globally. The data jointly represent variations in both market strength and accessibility based on three market influence indices derived from an index of accessibility to market locations and national level gross domestic product (purchasing power parity). These indices show strong correspondence with human population density while also revealing several distinct and useful relationships with other global environmental patterns. As market influence grows, the need for high resolution global data on market influence and its dynamics will become increasingly important to understanding and forecasting global environmental change. © 2011 IOP Publishing Ltd

    Protective Efficacy of Serially Up-Ranked Subdominant CD8+ T Cell Epitopes against Virus Challenges

    Get PDF
    Immunodominance in T cell responses to complex antigens like viruses is still incompletely understood. Some data indicate that the dominant responses to viruses are not necessarily the most protective, while other data imply that dominant responses are the most important. The issue is of considerable importance to the rational design of vaccines, particularly against variable escaping viruses like human immunodeficiency virus type 1 and hepatitis C virus. Here, we showed that sequential inactivation of dominant epitopes up-ranks the remaining subdominant determinants. Importantly, we demonstrated that subdominant epitopes can induce robust responses and protect against whole viruses if they are allowed at least once in the vaccination regimen to locally or temporally dominate T cell induction. Therefore, refocusing T cell immune responses away from highly variable determinants recognized during natural virus infection towards subdominant, but conserved regions is possible and merits evaluation in humans

    Healthcare providers' knowledge, experience and challenges of reporting adverse events following immunisation: a qualitative study

    Get PDF
    Background: Healthcare provider spontaneous reporting of suspected adverse events following immunisation (AEFI) is central to monitoring post-licensure vaccine safety, but little is known about how healthcare professionals recognise and report to surveillance systems. The aim of this study was explore the knowledge, experience and attitudes of medical and nursing professionals towards detecting and reporting AEFI. Methods: We conducted a qualitative study, using semi-structured, face to face interviews with 13 Paediatric Emergency Department consultants from a tertiary paediatric hospital, 10 General Practitioners, 2 local council immunisation and 4 General Practice nurses, recruited using purposive sampling in Adelaide, South Australia, between December 2010 and September 2011. We identified emergent themes related to previous experience of an AEFI in practice, awareness and experience of AEFI reporting, factors that would facilitate or impede reporting and previous training in vaccine safety. Thematic analysis was used to analyse the data. Results: AEFI reporting was infrequent across all groups, despite most participants having reviewed an AEFI. We found confusion about how to report an AEFI and variability, according to the provider group, as to the type of events that would constitute a reportable AEFI. Participants’ interpretation of a “serious” or “unexpected” AEFI varied across the three groups. Common barriers to reporting included time constraints and unsatisfactory reporting processes. Nurses were more likely to have received formal training in vaccine safety and reporting than medical practitioners. Conclusions: This study provides an overview of experience and beliefs of three healthcare professional groups in relation to identifying and reporting AEFI. The qualitative assessment reveals differences in experience and awareness of AEFI reporting across the three professional groups. Most participants appreciated the importance of their role in AEFI surveillance and monitoring the ongoing safety of vaccines. Future initiatives to improve education, such as increased training to health care providers, particularly, medical professionals, are required and should be included in both undergraduate curricula and ongoing, professional development.Adriana Parrella, Annette Braunack-Mayer, Michael Gold, Helen Marshall and Peter Baghurs

    Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis

    Get PDF
    Summary Background: Predicting when and where pathogens will emerge is difficult, yet, as shown by the recent Ebola and Zika epidemics, effective and timely responses are key. It is therefore crucial to transition from reactive to proactive responses for these pathogens. To better identify priorities for outbreak mitigation and prevention, we developed a cohesive framework combining disparate methods and data sources, and assessed subnational pandemic potential for four viral haemorrhagic fevers in Africa, Crimean–Congo haemorrhagic fever, Ebola virus disease, Lassa fever, and Marburg virus disease. Methods: In this multistage analysis, we quantified three stages underlying the potential of widespread viral haemorrhagic fever epidemics. Environmental suitability maps were used to define stage 1, index-case potential, which assesses populations at risk of infection due to spillover from zoonotic hosts or vectors, identifying where index cases could present. Stage 2, outbreak potential, iterates upon an existing framework, the Index for Risk Management, to measure potential for secondary spread in people within specific communities. For stage 3, epidemic potential, we combined local and international scale connectivity assessments with stage 2 to evaluate possible spread of local outbreaks nationally, regionally, and internationally. Findings: We found epidemic potential to vary within Africa, with regions where viral haemorrhagic fever outbreaks have previously occurred (eg, western Africa) and areas currently considered non-endemic (eg, Cameroon and Ethiopia) both ranking highly. Tracking transitions between stages showed how an index case can escalate into a widespread epidemic in the absence of intervention (eg, Nigeria and Guinea). Our analysis showed Chad, Somalia, and South Sudan to be highly susceptible to any outbreak at subnational levels. Interpretation Our analysis provides a unified assessment of potential epidemic trajectories, with the aim of allowing national and international agencies to pre-emptively evaluate needs and target resources. Within each country, our framework identifies at-risk subnational locations in which to improve surveillance, diagnostic capabilities, and health systems in parallel with the design of policies for optimal responses at each stage. In conjunction with pandemic preparedness activities, assessments such as ours can identify regions where needs and provisions do not align, and thus should be targeted for future strengthening and support. Funding Paul G Allen Family Foundation, Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development

    Bone Marrow Derived Mesenchymal Stem Cells Inhibit Inflammation and Preserve Vascular Endothelial Integrity in the Lungs after Hemorrhagic Shock

    Get PDF
    Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat “fixed volume” model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury
    corecore