35 research outputs found

    Effects of Varying Proportions of Glass on Reflectance Spectra of HED Polymict Breccias

    Get PDF
    Some meteorites contain significant amounts of glass, which, in most cases, probably results from impact processes on parent bodies.. Yamato 82202 is an example of one of the unequilibrated eucrites that contains significant proportions of impact glass distributed as veins throughout the meteorite. In other cases, fragments of glass are distributed throughout polymict breccias. For example, the polymict eucrite EET 87509 contains rare angular fragments of devitrified glass. Proportions of glass in most of these meteorites and in lithic clasts within these meteorites may vary locally from small amounts (less than one percent) to much larger amounts (subequal proportions of glass and mineral material). For example, some fragments within the South African polymict eucrite Macibini contain approximately 50% glass. The presence of these variable proportions of meteorite glass confirm the increased recognition that impact processes played an important role in the histories of asteroidal bodies. This study attempts to quantify the effects of a glass component on reflectance spectra by analyzing in the laboratory mixtures of varying proportions of a well-characterized HED polymict breccia and glass derived by melting a bulk sample of that breccia

    Neutron Absorption Measurements Constrain Eucrite-Diogenite Mixing in Vesta's Regolith

    Get PDF
    The NASA Dawn Mission s Gamma Ray and Neutron Detector (GRaND) [1] acquired mapping data during 5 months in a polar, low altitude mapping orbit (LAMO) with approx.460-km mean radius around main-belt asteroid Vesta (264-km mean radius) [2]. Neutrons and gamma rays are produced by galactic cosmic ray interactions and by the decay of natural radioelements (K, Th, U), providing information about the elemental composition of Vesta s regolith to depths of a few decimeters beneath the surface. From the data acquired in LAMO, maps of vestan neutron and gamma ray signatures were determined with a spatial resolution of approx.300 km full-width-at-half-maximum (FWHM), comparable in scale to the Rheasilvia impact basin (approx.500 km diameter). The data from Vesta encounter are available from the NASA Planetary Data System. Based on an analysis of gamma-ray spectra, Vesta s global-average regolith composition was found to be consistent with the Howardite, Eucrite, and Diogenite (HED) meteorites, reinforcing the HED-Vesta connection [2-7]. Further, an analysis of epithermal neutrons revealed variations in the abundance of hydrogen on Vesta s surface, reaching values up to 400 micro-g/g [2]. The association of high concentrations of hydrogen with equatorial, low-albedo surface regions indicated exogenic delivery of hydrogen by the infall of carbonaceous chondrite (CC) materials. This finding was buttressed by the presence of minimally-altered CC clasts in howardites, with inferred bulk hydrogen abundances similar to that found by GRaND, and by studies using data from Dawn s Framing Camera (FC) and VIR instruments [8-10]. In addition, from an analysis of neutron absorption, spatial-variations in the abundance of elements other than hydrogen were detected [2]

    Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    Get PDF
    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds

    Nature of the "Orange" Material on Vesta From Dawn

    Get PDF
    From ground-based observations of Vesta, it is well-known that the vestan surface has a large variation in albedo. Analysis of images acquired by the Hubble Space Telescope allowed production of the first color maps of Vesta and showed a diverse surface in terms of reflectance. Thanks to images collected by the Dawn spacecraft at Vesta, it became obvious that these specific units observed previously can be linked to geological features. The presence of the darkest material mostly around impact craters and scattered in the Western hemisphere has been associated with carbonaceous chondrite contamination [4]; whereas the brightest materials are believed to result from exposure of unaltered material from the subsurface of Vesta (in fresh looking impact crater rims and in Rheasilvia's ejecta and rim remants). Here we focus on a distinct material characterized by a steep slope in the near-IR relative to all other kinds of materials found on Vesta. It was first detected when combining Dawn Framing Camera (FC) color images in Clementine false-color composites [5] during the Approach phase of the mission (100000 to 5200 km from Vesta). We investigate the mineralogical and elemental composition of this material and its relationship with the HEDs (Howardite-Eucrite- Diogenite group of meteorites)

    The Impact History of Vesta: New Views from the Dawn Mission

    Get PDF
    The Dawn mission has completed its Survey and High-Altitude Mapping Orbit (HAMO) phases at Vesta, resulting in 60-70 meter per pixel imaging, high-resolution image-derived topography, and visual and infrared spectral data covering up to approx.50 degrees north latitude (the north pole was in shadow during these mission phases). These data have provided unprecedented views of the south polar impact structure first detected in HST imaging [1], now named Rheasilvia, and in addition hint at the existence of a population of ancient basins. Smaller craters are seen at all stages from fresh to highly-eroded, with some exposing atypically bright or dark material. The morphology of some craters has been strongly influenced by regional slope. Detailed studies of crater morphology are underway. We have begun making crater counts to constrain the relative ages of different regions of the surface, and are working towards developing an absolute cratering chronology for Vesta's surface

    A SIMPLIFIED EXPRESSION FOR LOW CLEAVAGE PROBABILITY CALCULATION

    No full text
    International audienc

    Surveying Vesta's styles of space weathering and surface mixing

    No full text
    The Dawn spacecraft's mission at Vesta [1] has revealed a world that, although much smaller than the Moon or Mercury, has experienced planet-like processes and undergone a complicated geological evolution [2]. One fascinating characteristic of Vesta is the manner in which the regolith evolves in response to exposure to the space environment. In general, vestan space weathering is dominated by admixture of low-reflectance material delivered by carbonaceous chondrite (CC) impactors [3-7]. As a result, freshly exposed vestan basaltic material tends to become darker with time, and the strong absorption bands (near 1000 and 2000 nm) caused by ferrous iron in pyroxene become shallower. Darkening and decreased band contrast are hallmarks of lunar space weathering, however on the Moon these are accompanied by a strong increase in the continuum slope (reddening) [e.g., 8, 9]. The cause of the spectral changes on the Moon is the accumulation of micro- and nanophase metallic iron as a result of melting and vaporization by micrometeoroid bombardment and/or solar-wind sputtering [reviewed by 10]. We are conducting a survey of impact mixing and regolith maturation trends in different regions of Vesta. The goals are to document the range of space weathering styles on Vesta, and to examine how the observed trends can give clues to the composition of the material that is undergoing space weathering. The findings should help to further understanding of space weathering in the asteroid belt, and hence as a general phenomenon across the Solar System. Here we present results from two locations that illustrate Vesta's spectral diversity: Vibidia crater and near Oppia crater

    Optical Space Weathering on Vesta: Radiative-transfer Models and Dawn Observations

    No full text
    Exposure to ion and micrometeoroid bombardment in the space environment causes physical and chemical changes in the surface of an airless planetary body. These changes, called space weathering, can strongly influence a surface's optical characteristics, and hence 2 complicate interpretation of composition from reflectance spectroscopy. Prior work using data from the Dawn spacecraft (Pieters et al., 2012) found that accumulation of nanophase metallic iron (npFe0), which is a key space-weathering product on the Moon, does not appear to be important on Vesta, and instead regolith evolution is dominated by mixing with carbonaceous chondrite (CC) material delivered by impacts. In order to gain further insight into the nature of space weathering on Vesta, we constructed model reflectance spectra using Hapke's radiative-transfer theory and used them as an aid to understanding multispectral observations obtained by Dawn's Framing Cameras (FC). The model spectra, for a howardite mineral assemblage, include both the effects of npFe0 and that of a mixed CC component. We found that a plot of the 438-nm/555-nm ratio vs. the 555-nm reflectance for the model spectra helps to separate the effects of lunar-style space weathering (LSSW) from those of CC-mixing. We then constructed ratio-reflectance pixel scatterplots using FC images for four areas of contrasting composition: a eucritic area at Vibidia crater, a diogenitic area near Antonia crater, olivine-bearing material within Bellicia crater, and a light mantle unit (referred to as an "orange patch" in some previous studies, based on steep spectral slope in the visible) northeast of Oppia crater. In these four cases the observed spectral trends are those expected from CC-mixing, with no evidence for weathering dominated by production of npFe0. In order to survey a wider range of surfaces, we also defined a spectral parameter that is a function of the change in 438-nm/555-nm ratio and the 555-nm reflectance between fresh and mature surfaces, permitting the spectral change to be classified as LSSW-like or CC-mixing-like. When applied to 21 fresh and mature FC spectral pairs, it was found that none have changes consistent with LSSW. We discuss Vesta's lack of LSSW in relation to the possible agents of space weathering, the effects of physical and compositional differences among asteroid surfaces, and the possible role of magnetic shielding from the solar wind
    corecore