102 research outputs found

    An in-silico quality assurance study of contouring target volumes in thoracic tumors within a cooperative group setting

    Get PDF
    Introduction: Target delineation variability is a significant technical impediment in multi-institutional trials which employ intensity modulated radiotherapy (IMRT), as there is a real potential for clinically meaningful variances that can impact the outcomes in clinical trials. The goal of this study is to determine the variability of target delineation among participants from different institutions as part of Southwest Oncology Group (SWOG) Radiotherapy Committee\u27s multi-institutional in-silico quality assurance study in patients with Pancoast tumors as a dry run for trial implementation. Methods: CT simulation scans were acquired from four patients with Pancoast tumor. Two patients had simulation 4D-CT and FDG-FDG PET-CT while two patients had 3D-CT and FDG-FDG PET-CT. Seventeen SWOG-affiliated physicians independently delineated target volumes defined as gross primary and nodal tumor volumes (GTV_P and GTV_N), clinical target volume (CTV), and planning target volume (PTV).Six board-certified thoracic radiation oncologists were designated as the \u27Experts\u27 for this study. Their delineations were used to create a simultaneous truth and performance level estimation (STAPLE) contours using ADMIRE software (Elekta AB, Sweden 2017). Individual participants\u27 contours were then compared with Experts\u27 STAPLE contours. Results: When compared to the Experts\u27 STAPLE, GTV_P had the best agreement among all participants, while GTV_N showed the lowest agreement among all participants. There were no statistically significant differences in all studied parameters for all TVs for cases with 4D-CT versus cases with 3D-CT simulation scans. Conclusions: High degree of inter-observer variation was noted for all target volume except for GTV_P, unveiling potentials for protocol modification for subsequent clinically meaningful improvement in target definition. Various similarity indices exist that can be used to guide multi-institutional radiotherapy delineation QA credentialing

    Development of a practical dietitian road map for the nutritional management of phenylketonuria (PKU) patients on pegvaliase

    Get PDF
    Funding Information: Outside the submitted work, the authors disclose the following. Bausell H received personal fees from BioMarin, Ultragenyx, Horizon and Vitaflo. Bélanger-Quintana A reports personal fees from BioMarin, Nutricia, Vitaflo, Orphan Europe, Takeda and Genzyme. Rocha JC received research grants from BioMarin, Glutamine and Cambrooke, as well as personal fees from BioMarin, Applied Pharma Research, Nutricia, Merck Serono, Vitaflo, Cambrooke, PIAM and Lifediet. MacDonald A reports research funding from BioMarin, Nutricia, Applied Pharma Research, Vitaflo, Galen, Metax, Mevalia and Arla, as well as lecture fees from BioMarin, Applied Pharma Research, Nutricia and Vitaflo, and consultancy fees from BioMarin, Applied Pharma Research, Arla, Nutricia and Vitaflo. Met Ed reports grant funding from BioMarin, Nutricia, Vitaflo and Horizon Pharmaceuticals. Bernstein L and Rohr F report lecture fees from Vitaflo. Publisher Copyright: © 2021 The Authors Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Background: The metabolic dietitian/nutritionist (hereafter ‘dietitian’) plays an essential role in the nutritional management of patients with phenylketonuria (PKU), including those on pegvaliase. Currently, more educational support and clinical experience is needed to ensure that dietitians are prepared to provide optimal nutritional management and counselling of pegvaliase-treated patients. Methods: Via a face-to-face data-review meeting, followed by a virtual consolidation meeting, a group of expert dietitians and one paediatrician discussed and developed a series of recommendations on the nutritional evaluation and management of patients receiving pegvaliase. The consensus group consisted of 10 PKU experts: six dietitians and one paediatrician from Europe and three dietitians from the US. One European and three US dietitians had experience with pegvaliase-treated patients. Results: The consensus group recommended that a physician, dietitian and nurse are part of the pegvaliase treatment team. Additionally, a psychologist/counsellor should be included if available. Practical proposals for the nutritional evaluation of pegvaliase-treated patients at baseline, during the induction and titration phases and for long-term maintenance were developed. The consensus group suggested assessment of blood Phe at least monthly or every 2 weeks in the event of low blood Phe (i.e., blood Phe <30 μmol/L). It may be appropriate to increase blood Phe monitoring when adjusting protein intake and/or pegvaliase dose. It was recommended that natural protein intake is increased by 10–20 g increments if blood Phe concentrations decrease to <240 μmol/L in patients who are not meeting the dietary reference intake for natural protein of 0.8 g/kg. It was proposed that with pegvaliase treatment blood Phe levels could be maintained <240 μmol/L but more evidence on the safety of achieving physiological blood Phe levels is necessary before any recommendation on the lower blood Phe target can be given. Finally, both patients and dietitians should have access to educational resources to optimally support patients receiving pegvaliase. Conclusion: This practical road map aims to provide initial recommendations for dietitians monitoring patients with PKU prescribed pegvaliase. Given that practical experience with pegvaliase is still limited, nutritional recommendations will require regular updating once more evidence is available and clinical experience evolves.publishersversionpublishe

    Treatment Toxicity: Radiation

    Get PDF
    Radiation exposures, both intentional and unintentional, have influence on normal tissue function. Short-term and long-term injuries can occur to all cell systems of both limited and rapid self-renewal potential. Radiation effects can last a lifetime for a patient and can produce complications for all organs and systems. Often invisible at the time of exposure, the fingerprints for cell damage can appear at any timepoint after. Health-care providers will need comprehensive knowledge and understanding of the acute and late effects of radiation exposure and how these interrelate with immediate and long-term care

    Imaging and Neuro-Oncology Clinical Trials of the National Clinical Trials Network (NCTN)

    Get PDF
    Imaging in neuro-oncology clinical trials can be used to validate patient eligibility, stage at presentation, response to therapy, and radiation therapy. A number of National Clinical Trials Network trials illustrating this are presented. Through the Imaging and Radiation Oncology Core’s quality assurance processes for data acquisition and review, there are uniform data and imaging sets for review. Once the trial endpoints have been analyzed and published, the clinical trial information including pathology, imaging, and radiation therapy objects can be moved to a public archive for use by investigators interested in translational science and the application of new informatics tools for trial analysis

    Acquisition and Management of Data for Translational Science in Oncology

    Get PDF
    Oncology clinical trials provide opportunity to advance care for patients with cancer. Bridging basic science with bedside care, cancer clinical trials have brought new and updated scientific knowledge at a rapid pace. Managing subject data in translation science requires a sophisticated informatics infrastructure that will enable harmonized datasets across all areas that could influence outcomes. Successful translational science requires that all relevant information be made readily available in a digital format that can be queried in a facile manner. Through a translational science prism, we look at past issues in cancer clinical trials and the new National Institutes of Health/National Cancer Institute initiative to address the need of database availability at an enterprise level

    Future vision for the quality assurance of oncology clinical trials

    Get PDF
    The National Cancer Institute clinical cooperative groups have been instrumental over the past 50 years in developing clinical trials and evidence-based process improvements for clinical oncology patient care. The cooperative groups are undergoing a transformation process as we further integrate molecular biology into personalized patient care and move to incorporate international partners in clinical trials. To support this vision, data acquisition and data management informatics tools must become both nimble and robust to support transformational research at an enterprise level. Information, including imaging, pathology, molecular biology, radiation oncology, surgery, systemic therapy, and patient outcome data needs to be integrated into the clinical trial charter using adaptive clinical trial mechanisms for design of the trial. This information needs to be made available to investigators using digital processes for real-time data analysis. Future clinical trials will need to be designed and completed in a timely manner facilitated by nimble informatics processes for data management. This paper discusses both past experience and future vision for clinical trials as we move to develop data management and quality assurance processes to meet the needs of the modern trial

    Modern Clinical Trials in Radiation Oncology

    Get PDF
    Clinical trials in radiation oncology have improved our translational science and patient care. All patients referred to departments of radiation oncology can be invited to participate in a clinical trial with multiple venues. Study endpoints can include intradepartmental endpoints to improve workflow and patient access as well as interdepartmental clinical translational trials that include the National Clinical Trials Network (NCTN) and industry. The quality of the trial is important to trial outcome and influences interpretation of the results of the study and how the results can be applied to patient care moving forward. Clinical trials in radiation oncology to date have accomplished much, however many important questions remain as patient care matures and systemic therapies become more sophisticated and associated with specific biomarkers and cellular expression products. In this chapter we review the history of clinical trials in radiation oncology and review the current status of the structure of quality assurance in clinical trials. We will review unanswered questions and areas to study in each disease area and how to design strategy for trials to address modern unmet needs in our discipline

    Integrated Analysis of Germline and Tumor DNA Identifies New Candidate Genes Involved in Familial Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) shows aggregation in some families but no alterations in the known hereditary CRC genes. We aimed to identify new candidate genes which are potentially involved in germline predisposition to familial CRC. An integrated analysis of germline and tumor whole-exome sequencing data was performed in 18 unrelated CRC families. Deleterious single nucleotide variants (SNV), short insertions and deletions (indels), copy number variants (CNVs) and loss of heterozygosity (LOH) were assessed as candidates for first germline or second somatic hits. Candidate tumor suppressor genes were selected when alterations were detected in both germline and somatic DNA, fulfilling Knudson's two-hit hypothesis. Somatic mutational profiling and signature analysis were also performed. A series of germline-somatic variant pairs were detected. In all cases, the first hit was presented as a rare SNV/indel, whereas the second hit was either a different SNV (3 genes) or LOH affecting the same gene (141 genes). BRCA2, BLM, ERCC2, RECQL, REV3L and RIF1 were among the most promising candidate genes for germline CRC predisposition. The identification of new candidate genes involved in familial CRC could be achieved by our integrated analysis. Further functional studies and replication in additional cohorts are required to confirm the selected candidates

    2017 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations Summary

    Get PDF
    The International Liaison Committee on Resuscitation has initiated a near-continuous review of cardiopulmonary resuscitation science that replaces the previous 5-year cyclic batch-and-queue approach process. This is the first of an annual series of International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations summary articles that will include the cardiopulmonary resuscitation science reviewed by the International Liaison Committee on Resuscitation in the previous year. The review this year includes 5 basic life support and 1 paediatric Consensuses on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Each of these includes a summary of the science and its quality based on Grading of Recommendations, Assessment, Development, and Evaluation criteria and treatment recommendations. Insights into the deliberations of the International Liaison Committee on Resuscitation task force members are provided in Values and Preferences sections. Finally, the task force members have pri-oritised and listed the top 3 knowledge gaps for each population, intervention, comparator, and outcome question. (C) 2017 European Resuscitation Council and American Heart Association, Inc. Published by Elsevier B.V. All rights reserved.Peer reviewe
    corecore