19,647 research outputs found

    Asymptotic analysis of first passage time in complex networks

    Full text link
    The first passage time (FPT) distribution for random walk in complex networks is calculated through an asymptotic analysis. For network with size NN and short relaxation time τâ‰ȘN\tau\ll N, the computed mean first passage time (MFPT), which is inverse of the decay rate of FPT distribution, is inversely proportional to the degree of the destination. These results are verified numerically for the paradigmatic networks with excellent agreement. We show that the range of validity of the analytical results covers networks that have short relaxation time and high mean degree, which turn out to be valid to many real networks.Comment: 6 pages, 4 figures, 1 tabl

    High-Speed Wireless Personal Area Networks: An Application of UWB Technologies

    Get PDF

    The noise and flow characteristics of inverted-profile coannular jets

    Get PDF
    A basic understanding of the noise reduction mechanisms in shock-free inverted-velocity-profile coannular jets was studied. Acoustic measurements are first conducted in an anechoic facility to isolate the effects of inverted velocity and inverted temperature for coannular jets having constant total thrust, mass flow rate and exit area. To obtain physical explanations of the measured noise changes, several types of experiments are conducted. These include (1) source location experiments using the polar correlation technique, (2) mean flow surveys using a combination pressure/temperature probe, and (3) detailed mean flow and turbulence measurements using a two-point four-channel laser velocimeter. The results from these experiments are presented and discussed in detail. Finally, the measured variations of coannular jet mixing noise with fan-to-primary velocity ratio and static temperature ratio are interpreted by utilizing the results from the various experimental phases in conjunction with the existing Lockheed single jet noise prediction model

    A Cerenkov-delta E-Cerenkov detector for high energy cosmic ray isotopes and an accelerator study of Ar-40 and Fe-56 fragmentation

    Get PDF
    A high energy cosmic ray detector--the High Energy Isotope Spectrometer Telescope (HEIST) is described. It is a large area (0.25 m(swp 2) SR) balloon borne isotope spectrometer designed to make high resolution measurements of isotopes in the element range from neon to nickel (10 Z 28) at energies of about 2 GeV/nucleon. HEIST determines the mass of individual nuclei by measuring both the change in the Lorentz factor (delta gamma) that results from traversing the NaI stack, and the energy loss (delta E) in the stack. Since the total energy of an isotope is given by E = (gamma M), the mass M can be determined by M = delta E/delta, gamma. The instrument is designed to achieve a typical mass resolution of 0.2 amu. The isotopic composition of the fragments from the breakup of high energy An-40 and Fe-56 nuclei are measured experimentally. Isotope yields are compared with calculated yields based on semi-empirical cross-section formulae

    Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al,Ga)As lasers

    Get PDF
    Broad area graded‐index separate‐confinement heterostructure single quantum well lasers grown by molecular‐beam epitaxy (MBE) with threshold current density as low as 93 A/cm^2 (520 ÎŒm long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A cw threshold current of 0.55 mA was obtained for a laser with facet reflectivities of ∌80%, a cavity length of 120 ÎŒm, and an active region stripe width of 1 ÎŒm. These devices driven directly with logic level signals have switch‐on delays <50 ps without any current prebias. Such lasers permit fully on–off switching while at the same time obviating the need for bias monitoring and feedback control

    Fluctuation Superconductivity in Mesoscopic Aluminum Rings

    Full text link
    Fluctuations are important near phase transitions, where they can be difficult to describe quantitatively. Superconductivity in mesoscopic rings is particularly intriguing because the critical temperature is an oscillatory function of magnetic field. There is an exact theory for thermal fluctuations in one-dimensional superconducting rings, which are therefore expected to be an excellent model system. We measure the susceptibility of many rings, one ring at a time, using a scanning SQUID that can isolate magnetic signals from seven orders of magnitude larger background applied flux. We find that the fluctuation theory describes the results and that a single parameter characterizes the ways in which the fluctuations are especially important at magnetic fields where the critical temperature is suppressed.Comment: Reprinted with permission from AAA

    A system to enrich for primitive streak-derivatives, definitive endoderm and mesoderm, from pluripotent cells in culture

    Get PDF
    Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.Sveltana Vassilieva, Hweee Ngee Goh, Kevin X. Lau, James N. Hughes, Mary Familari, Peter D. Rathjen and Joy Rathje

    Electron interferometry with nano-gratings

    Get PDF
    We present an electron interferometer based on near-field diffraction from two nanostructure gratings. Lau fringes are observed with an imaging detector, and revivals in the fringe visibility occur as the separation between gratings is increased from 0 to 3 mm. This verifies that electron beams diffracted by nanostructures remain coherent after propagating farther than the Talbot length zT=2d2/λz_T = 2d^2/\lambda = 1.2 mm, and hence is a proof of principle for the function of a Talbot-Lau interferometer for electrons. Distorted fringes due to a phase object demonstrates an application for this new type of electron interferometer.Comment: 4 pgs, 6 figure

    InGaAsP p-i-n photodiodes for optical communication at the 1.3-”m wavelength

    Get PDF
    The preparation and properties of Cd-diffused p-n homojunction InGaAsP photodiodes designed specifically for operation at the 1.3-”m wavelength are described. At a reverse bias of 10 V, the dark current of these diodes was as low as 15 pA. The peak responsivity at 1.3-”m wavelength was 0.7 A/W. An impulse response (full width at half maximum) of 60 ps and a 3-dB bandwidth of 5.5 GHz were achieved.
    • 

    corecore