12 research outputs found

    Pierwotny tętniak zapalny tętnicy szyjnej wspólnej : opis przypadku

    Get PDF
    Background: Aneurysms of the common carotid artery are relatively rare. Mycotic aneurysms in such location occur even less frequently. Causative factors can be sepsis, recent surgery, or dental procedures. Immunosuppression may also be a burdening factor. Case report: The authors present the case of a 70-year-old male patient with primary mycotic carotid artery aneurysm. The patient was diagnosed with ultrasound and multidetector spiral computed tomography and treated operatively with a PTFE prosthesis. Culture-appropriate antibiotic therapy was administered during the perioperative period. Discussion: The rarity of extracranial carotid artery aneurysms might cause diagnostic and treatment difficulties. Open surgery is the recommended method, although the endovascular approach is gaining more acceptance. The choice of treatment modality might be facilitated by a detailed morphologic description of the aneurysm and its surroundings. Available methods of imaging are described

    Noncommuting conserved charges in quantum thermodynamics and beyond

    Full text link
    Thermodynamic systems typically conserve quantities ("charges") such as energy and particle number. The charges are often assumed implicitly to commute with each other. Yet quantum phenomena such as uncertainty relations rely on observables' failure to commute. How do noncommuting charges affect thermodynamic phenomena? This question, upon arising at the intersection of quantum information theory and thermodynamics, spread recently across many-body physics. Charges' noncommutation has been found to invalidate derivations of the thermal state's form, decrease entropy production, conflict with the eigenstate thermalization hypothesis, and more. This Perspective surveys key results in, opportunities for, and work adjacent to the quantum thermodynamics of noncommuting charges. Open problems include a conceptual puzzle: Evidence suggests that noncommuting charges may hinder thermalization in some ways while enhancing thermalization in others.Comment: 9.5 pages (3 figures) + appendices (10 pages

    Quantum advantage in postselected metrology

    Get PDF
    Abstract: In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool

    Using the concept of Dynamic Aperture to model the pseudo-diffusive effects in beams and estimate non-burnoff intensity losses

    No full text
    Overall, using the concept of dynamic aperture to predict intensity losses seems to be successful, with fits giving good agreement with the data. Comparison of three suggested models was made, and it was suggested that model 11 is optimal in terms of number of parameters and computation time

    Quantum advantage in postselected metrology

    Get PDF
    © 2020, The Author(s). In every parameter-estimation experiment, the final measurement or the postprocessing incurs a cost. Postselection can improve the rate of Fisher information (the average information learned about an unknown parameter from a trial) to cost. We show that this improvement stems from the negativity of a particular quasiprobability distribution, a quantum extension of a probability distribution. In a classical theory, in which all observables commute, our quasiprobability distribution is real and nonnegative. In a quantum-mechanically noncommuting theory, nonclassicality manifests in negative or nonreal quasiprobabilities. Negative quasiprobabilities enable postselected experiments to outperform optimal postselection-free experiments: postselected quantum experiments can yield anomalously large information-cost rates. This advantage, we prove, is unrealizable in any classically commuting theory. Finally, we construct a preparation-and-postselection procedure that yields an arbitrarily large Fisher information. Our results establish the nonclassicality of a metrological advantage, leveraging our quasiprobability distribution as a mathematical tool

    Global impact of the COVID-19 pandemic on subarachnoid haemorrhage hospitalisations, aneurysm treatment and in-hospital mortality: 1-year follow-up

    No full text
    Background: Prior studies indicated a decrease in the incidences of aneurysmal subarachnoid haemorrhage (aSAH) during the early stages of the COVID-19 pandemic. We evaluated differences in the incidence, severity of aSAH presentation, and ruptured aneurysm treatment modality during the first year of the COVID-19 pandemic compared with the preceding year. Methods: We conducted a cross-sectional study including 49 countries and 187 centres. We recorded volumes for COVID-19 hospitalisations, aSAH hospitalisations, Hunt-Hess grade, coiling, clipping and aSAH in-hospital mortality. Diagnoses were identified by International Classification of Diseases, 10th Revision, codes or stroke databases from January 2019 to May 2021. Results: Over the study period, there were 16 247 aSAH admissions, 344 491 COVID-19 admissions, 8300 ruptured aneurysm coiling and 4240 ruptured aneurysm clipping procedures. Declines were observed in aSAH admissions (-6.4% (95% CI -7.0% to -5.8%), p=0.0001) during the first year of the pandemic compared with the prior year, most pronounced in high-volume SAH and high-volume COVID-19 hospitals. There was a trend towards a decline in mild and moderate presentations of subarachnoid haemorrhage (SAH) (mild: -5% (95% CI -5.9% to -4.3%), p=0.06; moderate: -8.3% (95% CI -10.2% to -6.7%), p=0.06) but no difference in higher SAH severity. The ruptured aneurysm clipping rate remained unchanged (30.7% vs 31.2%, p=0.58), whereas ruptured aneurysm coiling increased (53.97% vs 56.5%, p=0.009). There was no difference in aSAH in-hospital mortality rate (19.1% vs 20.1%, p=0.12). Conclusion: During the first year of the pandemic, there was a decrease in aSAH admissions volume, driven by a decrease in mild to moderate presentation of aSAH. There was an increase in the ruptured aneurysm coiling rate but neither change in the ruptured aneurysm clipping rate nor change in aSAH in-hospital mortality

    Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: One-Year Follow-up.

    No full text
    BACKGROUND AND OBJECTIVES Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020). METHODS We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases. RESULTS There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations. DISCUSSION There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year. TRIAL REGISTRATION INFORMATION This study is registered under NCT04934020
    corecore