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SUPPLEMENTARY INFORMATION

Supplementary Note 1 — Expressing the postselected quantum Fisher information in terms of the KD
distribution

As shown in the Results section of our main paper, the postselected quantum Fisher information is given by
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where nonrenormalized postselected quantum state is [(/0°) = FU(6) |Wo), where |Wo) (Ug| = po. ph> = Tr(Fpg) is
the probability of postselection.

In this supplementary note, we show that Supplementary Equation [l can be expressed in terms of the doubly-
extended KD distribution:
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The first term of the quantum Fisher information (Supplementary Equation [1)) is
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where, in Supplementary Equation |4, we have expressed A and F in their corresponding eigendecompositions. This
expression can be rewritten in terms of the doubly extended Kirkwood-Dirac quasiprobability distribution (¢” =

(fla) (al pla’) (' | F)):
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Similarly, the second term of Supplementary Equation [1] is
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Combining the expressions above gives Supplementary Equation [2}
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Supplementary Note 2 — Proof of Theorem 2

Here, we prove Theorem 2. First, we upper-bound the right-hand side of Supplementary Equation |2} assuming that
all qa o f/pgs € [0, 1]. We label the M eigenvalues of A and arrange them in increasing order: a,as,...,aps, such
that a1 = amin and ap; = amax. Initially, we assume that the O-point of the eigenvalue axis is set such that a; = 0
and aps = Aa. In this scenario, all the components of the first term of Supplementary Equation [2] are nonnegative.
We temporarily ignore the form of ¢”° l /py’, and treat this ratio as a general quasiprobability distribution. Then,

T(0|¥5°) maximizes when qa ' f/p9 vanishes at all a’ values except @’ = amax. We define g, =3, feFrs qsea, f/pgs
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such that all g, € [0, 1] and ) q, = 1. If qa . f/Py is nonzero only when a’ = amax, Supplementary Equation
becomes

To(0]W°) :4aMana—4(ana)2. 8)

Expanding each sum, we obtain

IQ(9|\I’SQ) = 4a1W(qal a1 + K+ anaM) - 4(qa1a1 + K+ anaM)2 (9)
= 4G‘M(K =+ anaM) - 4(K + anaM>2a (10)

where we used gq,a1 = 0 and defined K = Zae{aQ,u.,aM,l} qea < apr. As A is not totally degenerate, ap; # 0, and
Supplementary Equation [10]is maximized when q,,, = (apr — 2K)/(2aps). This yields

max{Zq(0|¥y")} = a3, = (Aa)?, (11)

where we have recalled that ay; = Aa.
We are left with proving that we can always set a; = 0 and aj; = Aa. We continue to assume that qa o f /py” €10, 1],

and we shift all the eigenvalues by a constant real value d,. The effect on Zq(0|¥}°) is
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The last equality holds because qf; af = (q§,7 a f)* generally and we are assuming that qi af € R. Consequently, if
all qa " f/jr)lgS € [0, 1], then Zq(8]¥5°*) < (Aa)?. The second term of Supplementary Equation [2| cannot be decreased
by imaginary values in q(’j"a, 2 Moreover, the first term is necessarily real and nonnegative. Thus imaginary elements

qﬁf’a,,f cannot increase Zq(0|W}°). If Zo(0|Pg°) > (Aa)?, then ¢/°, s must have negative entries.

Supplementary Note 3 — Infinite postselected quantum Fisher information

Here, we show that the postselected quantum Fisher information Zq(6|¥}°) can approach infinity. The proof is by
example; other examples might exist.

We assume that the generator A has M > 3 eigenvalues that are not all identical. We also assume that we possess
an estimate 6y that lies close to the true value of 6: dyp = 0 — 0, with |0y| < 1. (The derivation of the quantum Fisher
information also rests on the assumption that one has access to such an estimate [I].)

By Supplementary Equations and [6]

To (6]0%) = ]:gsTr(FAU(G)ﬁoU(H)TA) - T (FU(0)500(0) A) \2. (14)
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We now choose F' and py such that Tq(0|V}®) approaches infinity.  Crudely, pj” must approach 0 while

Tr(FAU(0)poU(0)T A) either stays constant or approaches 0 more slowly. We label the M eigenvalues of A and
arrange them in incgeasing order: ai,as,...,ap, such that a1 = amin and ayr = amax-
First, we choose F' = |f1) (f1| + | f2) (f2], where
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and |ax) # |amax) s |amin) - We also choose py = |¥g) (¥y| such that
o) = [W0(60. )} = 0 (60) = {05 (6) = sin (D) 75 lamin) = lamad) + [o0s (6) 4 sin (@) )}~ (17)

¢ ~ 0 is a parameter that can be tuned to maximize the postselected Fisher information for a given approximation
accuracy Jp. As ¢ is a parameter of the input state, variations in the Fisher information with ¢ will reflect the effects
of disturbances to the input state. Substituting the expressions for F' and jy into Supplementary Equation M we
find

Zq(010}°) = 8{5 — 2cos(2¢) (cos[(arn — ar)dp] + cos|(ar — a1)dp]) + cos|(anr — a1)dp][sin(2¢) — 1] — sin(2¢) }

X {Qa?w —amak +ai +2ai — (3an + ap)ar + (anr — ax)(ay — ar) cos(4) (cos[(ars — a1)dg) — 1)

2

+ (ap — ax)(ax — ar) cos[(ans — a1)dp] + 2(an — ar) cos(2¢) ((a1 — ax) cos|(ans — a)dg]

+ (ar — anr) cos[(ar — a1)dp]) — 2(an — a1)?sin(2¢) + (ar — a1) ((ax — a1) cos[(anr — ax)do)

+ (anr — ax) cosl(a, — a1)dy]) sin(46) }. (18)
The postselection probability is

b = 1{5 — 2cos(2¢) ( cos[(an — ax)dg] + cos[(ar, — a1)dg]) + cos[(an — a1)dp][sin(2¢) — 1] — sin(2¢)}. (19)
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According to Supplementary Equation if first dp and then ¢ approaches 0 in Supplementary Equation o (0195%)
approaches infinity.

There are a few points to note. First, Zq(0|¥}®) diverges in the two ordered limits. In any real experiment, one could
not blindly set ¢ = 0, but would have to choose ¢ based on an estimate of 8. Second, if dy =~ 0, then 8y ~ 6, and the
pre-experiment variance of our initial estimate 6y, Var(6p), must be small. That is, we begin the experiment with much
information about 6. Guided by the Cramér-Rao bound, we expect that, in a useful experiment, Zq(0|¥}°) would
grow large, while 1/Var(f) < Zq(0|¥}"). Supplementary Figure[I]shows Zq (6]¥}*) x Var(fy) as a function of ¢ and &y
for an experiment where a; = —1, ay = 1, apy = 3 and Var(y) = 1075. If 6, is within a few og, = 1/Var(fy) of 6, then
T (0|9}°) x Var(fp) > 1. Supplementary Figure [1| shows that large values of 1/dy can result in even larger values of
Zq(0|V}). Supplementary Figure [l also illustrates the effect of input-state disturbances of ¢ on Zg(0|¥}”) x Var(6p).
Third, while the theoretical strategy investigated in this appendix achieves an infinite postselected quantum Fisher
information, the postselection also “wastes” information as limg_,o[lims, o ph° x Zq(8]¥5°)] < (Aa)?. If A possesses
certain properties, it is possible to avoid wasting information through the postselection; we show how in the following
appendix.

Supplementary Note 4 — Infinite postselected quantum Fisher information without loss of information

If the generator A has M > 4 eigenvalues, and the minimum and maximum eigenvalues are both at least dou-
bly degenerate, then Zg(0|¥}°) can approach infinity without information’s being lost in the events discarded by
postselection. We show how below.
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Supplementary Figure 1. Scaled postselected quantum Fisher information. The figure shows the postselected quantum
Fisher information (Supplementary Equation multiplied by the pre-experiment variance Var(6p) as a function of ¢ and dg.
For small values of d9 and ¢, the value of Zq(0|¥5°) x Var(6p) diverges. The eigenvalues a1, ar and aas are set to —1, 1 and 3,
respectively. Var(p) was set to 1 x 107°.

First, we assign the orthonormal eigenvectors |amin,) and |amin,) to the eigenvalues a1 = amin and as = amin,
respectively. Here, we have reused the eigenvalue notation from Supp. Mat. . Similarly, we assign the orthonormal
eigenvectors |amax,) and |Gmax,) to the eigenvalues ap; = Gmax and ap—1 = amax, respectively. Second, we set

F =|f1) (fil + |f2) (fal, where

_ |amax,) = @min, )
_ |amin,) = |@max, )
o) = el fta), 0

We also choose |¥y) such that

[Wo(bo, ¢)) = UT(%)%{[COS (¢) — sin ()] (|amax,) + |amin,)) + [0 () + cos (9)](|amax, ) + lamin, )} (28)

As in App. , ¢ = 0 is a parameter that can be tuned to maximize Zq(0|¥}°) for a given approximation accuracy of
dg.
Substituting the expressions for F' and pg into Supplementary Equation we find

sin? (2¢)(ay — a1)?

Tal0lve) = (1 — cos (2¢) cos [(ap — a1>501)2‘

(29)

The postselection probability is

o = 3 {1~ cos(20) cosl(anr — 1)y }. (30)

Again, we investigate the limit as our estimate 6y approaches the true value of 6:

. ps _ .2
dim py” = sin(¢), (31)



lim Zq(0]¥5°) = cot? (¢)(Aa)?, and (32)
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lim p}® x Zo(0|¥5°) = cos? (¢)(Aa)?. (33)
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In the limit as ¢ — 0,
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In conclusion, the above strategy allows us to obtain an infinite value for Zg (0| ¥5"), while pb® x Zg(0|V5°) = (Aa)?.
No information is lost in the postselection. As in Supplementary Note 3, the results hold for the two ordered limits.

T (01%5°) x Var(6o)

Supplementary references

[1] Samuel L. Braunstein and Carlton M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett.
72, 3439-3443 (1994).


http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439

	Supplementary Information – Quantum Advantage in Postselected Metrology
	Supplementary Information
	Supplementary Note 1 – Expressing the postselected quantum Fisher information in terms of the KD distribution
	Supplementary Note 2 – Proof of Theorem 2
	Supplementary Note 3 – Infinite postselected quantum Fisher information
	Supplementary Note 4 – Infinite postselected quantum Fisher information without loss of information
	Supplementary References

	References


