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SUPPLEMENTARY INFORMATION

Supplementary Note 1 – Expressing the postselected quantum Fisher information in terms of the KD
distribution

As shown in the Results section of our main paper, the postselected quantum Fisher information is given by

IQ(θ|Ψps
θ ) = 4 〈ψ̇ps

θ |ψ̇
ps
θ 〉

1

ppsθ
− 4| 〈ψ̇ps

θ |ψ
ps
θ 〉 |

2 1

(ppsθ )2
, (1)

where nonrenormalized postselected quantum state is |ψps
θ 〉 = F̂ Û(θ) |Ψ0〉, where |Ψ0〉 〈Ψ0| ≡ ρ̂0. ppsθ = Tr(F̂ ρ̂θ) is

the probability of postselection.
In this supplementary note, we show that Supplementary Equation 1 can be expressed in terms of the doubly-

extended KD distribution:
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The first term of the quantum Fisher information (Supplementary Equation 1) is
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where, in Supplementary Equation 4, we have expressed Â and F̂ in their corresponding eigendecompositions. This

expression can be rewritten in terms of the doubly extended Kirkwood-Dirac quasiprobability distribution (qρ̂a,a′,f =

〈f |a〉 〈a| ρ̂ |a′〉 〈a′|f〉):
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Similarly, the second term of Supplementary Equation 1 is

4
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Combining the expressions above gives Supplementary Equation 2:

IQ(θ|Ψps
θ ) = 4
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Supplementary Note 2 – Proof of Theorem 2

Here, we prove Theorem 2. First, we upper-bound the right-hand side of Supplementary Equation 2, assuming that

all qρ̂θa,a′,f/p
ps
θ ∈ [0, 1]. We label the M eigenvalues of Â and arrange them in increasing order: a1, a2, ..., aM , such

that a1 ≡ amin and aM ≡ amax. Initially, we assume that the 0-point of the eigenvalue axis is set such that a1 = 0
and aM = ∆a. In this scenario, all the components of the first term of Supplementary Equation 2 are nonnegative.

We temporarily ignore the form of qρ̂θa,a′,f/p
ps
θ , and treat this ratio as a general quasiprobability distribution. Then,

IQ(θ|Ψps
θ ) maximizes when qρ̂θa,a′,f/p

ps
θ vanishes at all a′ values except a′ = amax. We define qa ≡

∑
a′,f∈Fps q

ρ̂θ
a,a′,f/p

ps
θ ,
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such that all qa ∈ [0, 1] and
∑
a qa = 1. If qρ̂θa,a′,f/p

ps
θ is nonzero only when a′ = amax, Supplementary Equation 2

becomes

IQ(θ|Ψps
θ ) = 4aM

∑
a

qaa− 4
(∑
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qaa
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Expanding each sum, we obtain

IQ(θ|Ψps
θ ) = 4aM (qa1a1 +K + qaMaM )− 4(qa1a1 +K + qaMaM )2 (9)

= 4aM (K + qaMaM )− 4(K + qaMaM )2, (10)

where we used qa1a1 = 0 and defined K ≡
∑
a∈{a2,...,aM−1} qaa ≤ aM . As Â is not totally degenerate, aM 6= 0, and

Supplementary Equation 10 is maximized when qaM = (aM − 2K)/(2aM ). This yields

max{IQ(θ|Ψps
θ )} = a2M = (∆a)2, (11)

where we have recalled that aM = ∆a.
We are left with proving that we can always set a1 = 0 and aM = ∆a. We continue to assume that qρ̂θa,a′,f/p

ps
θ ∈ [0, 1],

and we shift all the eigenvalues by a constant real value δa. The effect on IQ(θ|Ψps
θ ) is
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The last equality holds because qρ̂a,a′,f =
(
qρ̂a′,a,f

)∗
generally and we are assuming that qρ̂a,a′,f ∈ R. Consequently, if

all qρ̂θa,a′,f/p
ps
θ ∈ [0, 1], then IQ(θ|Ψps

θ ) ≤ (∆a)2. The second term of Supplementary Equation 2 cannot be decreased

by imaginary values in qρ̂θa,a′,f . Moreover, the first term is necessarily real and nonnegative. Thus imaginary elements

qρ̂θa,a′,f cannot increase IQ(θ|Ψps
θ ). If IQ(θ|Ψps

θ ) > (∆a)2, then qρ̂θa,a′,f must have negative entries.

Supplementary Note 3 – Infinite postselected quantum Fisher information

Here, we show that the postselected quantum Fisher information IQ(θ|Ψps
θ ) can approach infinity. The proof is by

example; other examples might exist.
We assume that the generator Â has M ≥ 3 eigenvalues that are not all identical. We also assume that we possess

an estimate θ0 that lies close to the true value of θ: δθ ≡ θ− θ0, with |δθ| � 1. (The derivation of the quantum Fisher
information also rests on the assumption that one has access to such an estimate [1].)

By Supplementary Equations 1, 3 and 6,

IQ(θ|Ψps
θ ) =

4

ppsθ
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)
− 4
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We now choose F̂ and ρ̂0 such that IQ(θ|Ψps
θ ) approaches infinity. Crudely, ppsθ must approach 0 while

Tr(F̂ ÂÛ(θ)ρ̂0Û(θ)†Â) either stays constant or approaches 0 more slowly. We label the M eigenvalues of Â and
arrange them in increasing order: a1, a2, ..., aM , such that a1 ≡ amin and aM ≡ amax.

First, we choose F̂ = |f1〉 〈f1|+ |f2〉 〈f2|, where

|f1〉 ≡
|amax〉+ |amin〉√

2
, (15)

|f2〉 ≡
i√
2
(|amax〉 − |amin〉) + |ak〉

√
2

, (16)
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and |ak〉 6= |amax〉 , |amin〉 . We also choose ρ̂0 = |Ψ0〉 〈Ψ0| such that

|Ψ0〉 ≡ |Ψ0(θ0, φ)〉 = Û†(θ0)
1√
2

{
[cos (φ)− sin (φ)]

i√
2

(|amin〉 − |amax〉) + [cos (φ) + sin (φ)] |ak〉
}
. (17)

φ ≈ 0 is a parameter that can be tuned to maximize the postselected Fisher information for a given approximation
accuracy δθ. As φ is a parameter of the input state, variations in the Fisher information with φ will reflect the effects
of disturbances to the input state. Substituting the expressions for F̂ and ρ̂0 into Supplementary Equation 14, we
find

IQ(θ|Ψps
θ ) = 8

{
5− 2 cos(2φ)

(
cos[(aM − ak)δθ] + cos[(ak − a1)δθ]

)
+ cos[(aM − a1)δθ][sin(2φ)− 1]− sin(2φ)

}−2
×
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(
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)

+ (aM − ak)(ak − a1) cos[(aM − a1)δθ] + 2(aM − a1) cos(2φ)
(
(a1 − ak) cos[(aM − ak)δθ]

+ (ak − aM ) cos[(ak − a1)δθ]
)
− 2(aM − a1)2 sin(2φ) + (aM − a1)

(
(ak − a1) cos[(aM − ak)δθ]

+ (aM − ak) cos[(ak − a1)δθ]
)

sin(4φ)
}
. (18)

The postselection probability is
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1
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)
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}
. (19)

In the limit as our estimate θ0 approaches the true value of θ, such that δθ → 0,

lim
δθ→0

ppsθ = sin2(φ), (20)
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(cot (φ)− 1)2

2
(∆a)2, and (21)

lim
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ppsθ × IQ(θ|Ψps
θ ) =

1

2
[1− sin (2φ)](∆a)2. (22)

In the limit as φ→ 0,

lim
φ→0

[
lim
δθ→0

ppsθ

]
= 0, (23)

lim
φ→0

[
lim
δθ→0

IQ(θ|Ψps
θ )
]

=∞, and (24)

lim
φ→0

[
lim
δθ→0

ppsθ × IQ(θ|Ψps
θ )
]

=
1

2
(∆a)2. (25)

According to Supplementary Equation 24, if first δθ and then φ approaches 0 in Supplementary Equation 18, IQ(θ|Ψps
θ )

approaches infinity.
There are a few points to note. First, IQ(θ|Ψps

θ ) diverges in the two ordered limits. In any real experiment, one could
not blindly set φ = 0, but would have to choose φ based on an estimate of θ. Second, if δθ ≈ 0, then θ0 ≈ θ, and the
pre-experiment variance of our initial estimate θ0, Var(θ0), must be small. That is, we begin the experiment with much
information about θ. Guided by the Cramér-Rao bound, we expect that, in a useful experiment, IQ(θ|Ψps

θ ) would
grow large, while 1/Var(θ0) < IQ(θ|Ψps

θ ). Supplementary Figure 1 shows IQ(θ|Ψps
θ )×Var(θ0) as a function of φ and δθ

for an experiment where a1 = −1, ak = 1, aM = 3 and Var(θ0) = 10−6. If θ0 is within a few σθ0 ≡
√

Var(θ0) of θ, then
IQ(θ|Ψps

θ )×Var(θ0)� 1. Supplementary Figure 1 shows that large values of 1/δθ can result in even larger values of
IQ(θ|Ψps

θ ). Supplementary Figure 1 also illustrates the effect of input-state disturbances of φ on IQ(θ|Ψps
θ )×Var(θ0).

Third, while the theoretical strategy investigated in this appendix achieves an infinite postselected quantum Fisher
information, the postselection also “wastes” information as limφ→0[limδθ→0 p

ps
θ × IQ(θ|Ψps

θ )] < (∆a)2. If Â possesses
certain properties, it is possible to avoid wasting information through the postselection; we show how in the following
appendix.

Supplementary Note 4 – Infinite postselected quantum Fisher information without loss of information

If the generator Â has M ≥ 4 eigenvalues, and the minimum and maximum eigenvalues are both at least dou-
bly degenerate, then IQ(θ|Ψps

θ ) can approach infinity without information’s being lost in the events discarded by
postselection. We show how below.
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Supplementary Figure 1. Scaled postselected quantum Fisher information. The figure shows the postselected quantum
Fisher information (Supplementary Equation 18) multiplied by the pre-experiment variance Var(θ0) as a function of φ and δθ.
For small values of δθ and φ, the value of IQ(θ|Ψps

θ )×Var(θ0) diverges. The eigenvalues a1, ak and aM are set to −1, 1 and 3,
respectively. Var(θ0) was set to 1× 10−6.

First, we assign the orthonormal eigenvectors |amin1
〉 and |amin2

〉 to the eigenvalues a1 = amin and a2 = amin,
respectively. Here, we have reused the eigenvalue notation from Supp. Mat. . Similarly, we assign the orthonormal
eigenvectors |amax1

〉 and |amax2
〉 to the eigenvalues aM = amax and aM−1 = amax, respectively. Second, we set

F̂ = |f1〉 〈f1|+ |f2〉 〈f2|, where

|f1〉 ≡
|amax2

〉 − |amin1
〉√

2
, (26)

|f2〉 ≡
|amin2

〉 − |amax1
〉√

2
. (27)

We also choose |Ψ0〉 such that

|Ψ0(θ0, φ)〉 = Û†(θ0)
1

2

{
[cos (φ)− sin (φ)](|amax2

〉+ |amin2
〉) + [sin (φ) + cos (φ)](|amax1

〉+ |amin1
〉)
}
. (28)

As in App. , φ ≈ 0 is a parameter that can be tuned to maximize IQ(θ|Ψps
θ ) for a given approximation accuracy of

δθ.
Substituting the expressions for F̂ and ρ̂0 into Supplementary Equation 14, we find

IQ(θ|Ψps
θ ) =

sin2 (2φ)(aM − a1)2(
1− cos (2φ) cos [(aM − a1)δθ]

)2 . (29)

The postselection probability is

ppsθ =
1

2

{
1− cos(2φ) cos[(aM − a1)δθ]

}
. (30)

Again, we investigate the limit as our estimate θ0 approaches the true value of θ:

lim
δθ→0

ppsθ = sin2(φ), (31)
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lim
δθ→0

IQ(θ|Ψps
θ ) = cot2 (φ)(∆a)2, and (32)

lim
δθ→0

ppsθ × IQ(θ|Ψps
θ ) = cos2 (φ)(∆a)2. (33)

In the limit as φ→ 0,

lim
φ→0

[
lim
δθ→0

ppsθ

]
= 0, (34)

lim
φ→0

[
lim
δθ→0

IQ(θ|Ψps
θ )
]

=∞, and (35)

lim
φ→0

[
lim
δθ→0

ppsθ × IQ(θ|Ψps
θ )
]

= (∆a)2. (36)

In conclusion, the above strategy allows us to obtain an infinite value for IQ(θ|Ψps
θ ), while ppsθ × IQ(θ|Ψps

θ ) = (∆a)2.
No information is lost in the postselection. As in Supplementary Note 3, the results hold for the two ordered limits.

IQ(θ|Ψps
θ )×Var(θ0)
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