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Abstract

Quantum computers are thought to be the future of computation, using the properties of
quantum mechanics to solve problems intractable to classical computers. Quantum com-
puting leverages non-classical properties, such as entanglement, to achieve an exponential
improvement in computational power. A quantum computer would enable us to address many
real-world problems, such as how to synthesize fertilizers more efficiently; how to combat
global warming; or to simulate protein folding in biological systems. Although much work
has been done to describe the use and implementation of entanglement generation theoreti-
cally, it is still a challenge to develop such protocols experimentally. The bulk of this work
is focused on creating Graphics Processing Unit (GPU)-accelerated computer simulations
of quantum systems with advanced numerical and analytical techniques. Simulations can
guide experiments attempting to create building blocks of quantum computers - qubits and
their control devices. However, simulation of more realistic device setups in two dimensional
systems has been facing problems owing to the space and time domain scaling associated
with the solutions of the many-particle time dependent Schrodinger equation (TDSE). Never-
theless, recent advances in computer hardware performance has made previously intractable
two-particle problems readily solvable. I have developed custom GPU-accelerated software
based on a staggered-leapfrog algorithm that opens up new possibilities of simulating two-
dimensional two-particle systems accurately.

I focus on three research projects. Firstly, optimally defining a charge-based solid state
qubit, and controlling it in a simple and experimentally achievable way, while accounting for
imperfections of the waveform generators. I simulate the physical qubit on a fine-grained
lattice, and propose an innovative control scheme that accounts for finite rise/fall time of
the experimental apparatus, while being relatively fast and resulting in very high operation
fidelity. An optimal pulsing scheme with rise time-dependent parameters is found, and
shown to be able to achieve an arbitrary qubit rotation. Since the proposed pulse sequence
reduces to sine waves to minimize total pulse duration, it is straightforward to implement
experimentally, and easily generalisable to different systems. I also show how the fidelity
remains sufficiently high independently of the initial qubit state. The proposed sequence can
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even reduce errors caused by charge noise under certain conditions. Readout techniques are
discussed as well, and found to not present significant issues.

Secondly, I aid the effort to create a Surface Acoustic Wave quantum computer prototype
by describing how to produce an universal quantum gate set with a Root-of-SWAP operation
used as a physical two-qubit gate. Using realistic parameters, it is shown how this operation
can be performed with high fidelity. Previous work has been done to simulate a proposed
Root-of-SWAP method in one dimension [165] - this work focuses on extending this to two
dimensions.
We find that the method of generating Root-of-SWAP mentioned above breaks down in two
dimensions- unwanted excitations are introduced in the extra dimension, causing a phase
difference to appear, and thus ruining coherence of the state.
I propose to implement the Root-of-SWAP operation via a tunneling interaction across the
effective double dot instead. This was previously considered, however was thought to be
unstable against variations in tunnel barrier height, which has exponential impact on the
speed of the quantum operation. Using newly available computing power, we were able to
run detailed two dimensional simulations investigating this method and its robustness against
variations in the double dot potential. We find that the method produces high fidelity Root-
of-SWAP states, and is robust against small variations in the tunnel barrier. Additionally, we
find a relation between the tunnel barrier height and spin measurement probability, providing
a way for experimentalists to estimate an actual device barrier indirectly.

Finally, I theoretically model and simulate transport through a single electron transistor
(SET) device. It is shown that a single donor structure can reliably be engineered from doped
quantum dots by taking advantage of the tunability of the electron tunneling rates as well
as the interplay, at low temperatures, between disorder conferred by randomness in dopant
distribution and electron-electron interaction originating from the high doping concentration.
It is possible to electrostatically isolate a single donor from the large ensemble of dopants.
I investigate how such a complex system is expected to conduct, and verify a hypothesis
that two donors take part in the transport by numerically reproducing the experimental
measurements. Finally, it is shown that this device can be used as a single atom detector of
the charge occupancy of a nearby capacitively coupled double quantum dot. While this final
part does not make use of the GPU-accelerated software, it is still closely related to the rest
of this work, and the theme of modeling realistic quantum devices.
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Main results
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The main part of this thesis presents the work on Graphics Processing Unit-accelerated
numerical simulations and theoretical study of qubit dynamics in realistic systems. I describe
why simulations of realistic quantum systems are important for the future of quantum
computing, explain the theory and methods used in the GPU-accelerated staggered-leapfrog
software, and present research projects that utilise it. My work on quantum metrology, that,
while interesting on its own, does not fit into the above theme, is presented in Part II of this
thesis.





Chapter 1

Introduction

I Quantum computation

Since the dawn of civilization, humanity has always strived for a faster and better way to
calculate. From the antiquity’s geared mechanical calculation devices like the Antikythera
mechanism that calculated the date and tracked the positions of planets and the Moon [77],
through more complex and advanced machines like Charles Babbage’s differential engine
that would solve differential equations [44], and finally to modern general computers based
on semiconductors, computers have been getting faster and more accessible throughout
the ages. This has never been more obvious than now, with computational power roughly
doubling every 2 years, according to Moore’s law [28]. However, we seem to be close
to hitting the quantum limit with semiconductor technology -as the device scale becomes
smaller and smaller to fit in more transistors in a chip, quantum effects start to come into play
[124], [222], [197]. As distances become as small as 10 nanometers or even less, phenomena
like quantum tunneling start being a problem. After all, you cannot have a reliable computer
if the state of the machine can uncontrollably and probabilistically change due to an electron
tunneling out to where it’s not supposed to be, and once you get down to the smallest building
block, the atom, the architecture cannot be shrunk down any more.

Efforts are made to find a technology to overcome these limitations and keep improving
classical computers, however another way would be to embrace the quantumness and exploit
quantum mechanics to create a general fully programmable quantum computer. A quantum
computer would use effects such as superposition and entanglement to perform calculations
much faster than a classical computer ever could [74]. While we are still rather far away
from a general quantum computer, many useful quantum algorithms have been found that
solve important problems exponentially faster than any classical algorithm. For example,
the Grover algorithm [98] can search an unsorted database, the Deutsch–Jozsa algorithm
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can determine whether a function is constant or balanced [49], and perhaps the most famous
Shor algorithm can perform integer factorisation [203] - a problem whose difficulty virtually
all modern encryption relies on.

Building a robust quantum computer could significantly change the world we live in,
solving previously untractable problems. However, while the theory behind the idea is sound,
implementing it in practice is incredibly difficult. Building a reliable single qubit (a quantum
bit) is expensive and not necessary scalable to thousands or millions of qubits that would
be required. Indeed, quantum computers in operation today only have tens of qubits, an
IBM holding the current record with 54 superconducting transmon qubits [9]. While that
number is technically sufficient to achieve so called “quantum supremacy” - the point at
which the quantum computer is able to solve a problem that no classical counterpart is able
to solve - this is only true if you ignore errors that occur during the computation. Despite
the best experimental efforts, the final fidelity achieved by IBM is still sub- 1 % due to
issues with scalability. While a single operation can be made with very high fidelity, as the
computer grows in size, the errors multiply and get out of control. With the physical size
of the system growing, it becomes harder to have all the qubits connected while keeping
errors low. Therefore, if we wish to make quantum supremacy practically achievable, great
care must be taken to avoid decoherence - the loss of entanglement. The whole system
must be cooled to extremely low temperatures close to absolute zero, and separated from the
environment. The coherence times are typically up to milliseconds in most commonly used
qubits [127, 33], and the computation must be performed before the qubits decohere and
lose entanglement. While error correction techniques can be used to reduce errors [85], they
require a much greater amount of qubits to implement, making them currently not viable.
This places very significant difficulties on actually building a functioning quantum computer.

There is a search to find new feasible physical implementations. Examples of possible
implementations are linear optics [126], [187], trapped ions [60], [112], nuclear spin [118],
and many others [198], [226], [234]. Electrons carried by Surface Acoustic Waves (SAWs)
[19] are one such idea that we specifically focus on in this work.

DiVincenzo [52] has laid out the following 5 criteria that a practical quantum computer
must achieve in his seminal work:

1. Scalable physical system with well characterized qubits
A qubit is a quantum 2 state system, like spin states of a spin-1

2 particle or ground
and excited energy states of an atom. The system must contain a collection of qubits.
"Well characterized" means that the exact qubit dynamics and couplings to other qubits
should be known, and the occupation probability of any higher energy states must be
small enough to bring any errors under a required threshold. Scalability means that it’s
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possible to build a device with a large enough number of qubits, and that these qubits
should be able to entangle with one another so that the general quantum state spans the
whole complex Hilbert space.

2. The ability to initialize the state of the qubits to a simple fiducial state, such as |000⟩
To perform any calculation, the initial state of the system must be well known, therefore
there must be a way of reliably initialising the system to some reference state. This
could be achieved, depending on the qubit nature, by cooling the system to put it in the
ground state for energy level qubits, or by applying a strong magnetic field for spin
qubits.

3. Long relevant coherence times, much longer than the gate operation time
Coherence times characterize the dynamics of a qubit in contact with its environment.
Decoherence means a loss of quantumness, and needs to be avoided. This can be
generally done by cooling the system to extremely low temperatures to prevent thermal
excitations, and by keeping interaction with the environment to a minimum (until the
final measurement). The coherence times do not need to be of the same order as the
entire calculation thanks to error correction [184], but they are still a major limiting
factor.

4. A universal set of quantum gates
To perform a general computation, one needs a set of physical unitary operations
(gates) that can be used to express a general unitary transformation. There are many
sets of gates that satisfy this requirement, typically containing an arbitrary single qubit
SU(2) rotation and a two-qubit gate, for example CNOT or Root-of-SWAP.

5. A qubit-specific measurement capability
At the end of any quantum computation, a measurement must be performed on each
qubit, which will yield a classical 1 or 0 result. Therefore, there must be a reliable way
of measuring the state of each qubit with low enough error rates. However, perfect
efficiency is not required, as multiple computations can be performed.

II Quantum operations

Any calculation on a quantum computer can be expressed using the universal unitary gates
set [18]. There are many such sets, typically expressed in terms of single qubit operations
and a two qubit operation that is the physical gate specific to the implementation.
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To define what all those gates do, first let us define what a qubit is. In general, a qubit
is a system that can take 2 discrete values, |0⟩ and |1⟩. In this, the qubit is exactly like a
classical bit. It would typically be physically represented by a two-level system, with one
state assigned to |0⟩ and the other to |1⟩. What makes the qubit different from a bit is the
ability to exist in a superposition state

|ψ⟩= a |0⟩+b |1⟩ (1.1)

where a and b are complex numbers and a2 +b2 = 1 due to normalisation. This means
that there is a a2 probability to measure the qubit in |0⟩ state and b2 probability to measure it
in a |1⟩ state.

Such a general single qubit state can be geometrically represented on a Bloch sphere,
as per Fig. 1.1 below. The North and South poles of the sphere correspond to |0⟩ and |1⟩
states respectively, while any superposition of the two is specified by the polar and azimuthal
angles, θ and φ (Spherical polar coordinates). θ takes values between 0 and π , while φ is
between 0 and 2π The state can then be written in terms of those angles as:

|ψ⟩= cos
(

θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (1.2)

where i is the imaginary number.

Fig. 1.1 Bloch sphere. The angles θ and φ that define the qubit position on the sphere are
shown. The logical |0⟩ state is located on the “north pole” of the sphere, while the |1⟩ is on
the “south pole”. Image taken from [237].
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An advantage of this representation is that it maps the qubit operations, described by
the somewhat abstract group of unitary and hermitian SU(2) matrices, to 3D rotations on a
2-sphere described by the SO(3) group, which is isomorphic to the former. A single qubit
operation then corresponds to rotating the state vector on a Bloch sphere, and can take any
superposition of |0⟩ and |1⟩ to any other one. Such single qubit rotations are necessary in
any quantum computer implementation.

However, to perform meaningful calculations, there must be a way for the qubits to
interact and entangle with one another. This is where two qubit operations come in. A pure
non-entangled two qubit state can be represented in braket notation as |n1n2⟩, where n1 is the
state of the first qubit and n2 is the state of the second qubit. A general two qubit state can
then be written as:

|ψ⟩= a |00⟩+b |01⟩+ c |10⟩+d |11⟩ (1.3)

where a2 + b2 + c2 + d2 = 1 due to normalisation. A two qubit operation, or gate,
transforms between such two qubit states. It can be shown [51] that a two qubit gate such
as CNOT or (Square) Root-of-SWAP forms a universal gate set together with single qubit
rotations. Therefore, it is sufficient to only have a physical implementation of those gates to
achieve general quantum computation.

The CNOT, or controlled NOT gate, has the following matrix representation in basis
mentioned above:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.4)

This can be interpreted as : if the first (control) qubit is in a |1⟩ state, then flip the second
qubit state. Otherwise, do nothing.

The other universal two qubit gate, Root-of-SWAP, has the following representation:

√
SWAP =


1 0 0 0
0 1

2(1+ i) 1
2(1− i) 0

0 1
2(1− i) 1

2(1+ i) 0
0 0 0 1

 (1.5)

It can be interpreted as a halfway SWAP, where SWAP is a gate that swaps qubits 1 and
2. Therefore, Root-of-SWAP applied twice will yield a SWAP. The focus of this work is to
investigate the Root-of-SWAP operation as a basic physical to qubit gate.
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An N qubit non-entangled state can be represented as |n1n2...nN⟩, where nN is the state
of the Nth qubit. A general quantum computation would use gates from the universal set to
take an initial state, typically initialised to |00...0⟩, to some final state that is to be measured
for a result:

|ψ⟩=U1U2...UM |00...0⟩ (1.6)

where UM represents some operation from the universal gate set. It is worth noting that the
final result is classical - each qubit will be measured as either |0⟩ or |1⟩. The final state
probability distribution can be inferred from repeated measurements.

III Outline of work

III.I Single qubit control

Firstly, we investigate control of a single solid-state qubit, trying to find a simple and
experimentally realistic control scheme that takes rise/fall time of the waveform generator
into account. .

Solid-state quantum devices can be manufactured using the mature semiconductor tech-
nology and infrastructure, thus allowing for low costs and availability. Quantum dots in
silicon and III-V materials can be made with relatively long coherence times (10s of µ s ),
making them attractive candidates for qubits [102, 81, 173, 172, 231]. While not quite as
good as superconducting transmon qubits with coherence times of up to 100 µ s, it is enough
with short enough operation times. Double quantum dots (DQDs), dots with a potential
barrier in the middle separating the two halves, can be used to realise a variety of qubits
in a straightforward manner [145, 52]. Charge-based and spin-based qubits are commonly
used. The charge qubit is formed by having a single electron in the DQD, with the charge
distribution information being used to represent the qubit. An excess charge in the left dot
represents one logical state, say |0⟩, while charge in the right dot represents a |1⟩ state. The
charge can be read out by coupling a single electron transistor (SET) to one of the sides [73].
Alternatively, spin can be used to store the qubit information, although the readout would not
be as straightforward, requiring a full state tomography. While this work focuses on the study
of charge qubits, as they are easier to measure in practice [91], the results can be generalised
to spin qubits as well.

In the case of the charge qubit, it is common to use the two-site localised state model,
where we distinguish between the left and right charge states only. However, we must
note that in realistic DQD potentials, such fully localised states are quite far from energy
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eigenstates. Therefore, requiring perfect localisation will not result in a two-level system,
making it unsuitable for a qubit- the higher energy contributions will introduce significant
effective noise/decoherence [119]. This simple picture including only localised states will
fail to define a high fidelity, high coherence time qubit. We look at an alternative definition
here.

In both the charge and spin cases, single qubit operations, which move our qubit on
the Bloch sphere, are achieved by using surface gates [173, 172], or nearby electron/hole
reservoirs [102, 81], with external voltages applied. Applying voltage pulses on these gates
alters the relative energies of the two wells, allowing the electron to move between them,
and thus change state. Alternatively, one can think of the voltage gradient tilting the DQD
potential landscape, which will ”push” the electron towards the lower side.

These pulses alter the relative energies of the two quantum wells as well as the tunnel
barrier between them, allowing the qubit to oscillate between the basis states. Such a
manipulation of charge qubits has been successfully implemented in GaAs/AlGaAs [102, 56,
119, 173], Si/SiGe [200] and Si:P [189] devices. Alternatively, photon-assisted tunneling
can be used with AC pulses generally in the MHz-GHz range . But for defining a set of
unitary gate operations, one should be able to address any quantum state on the Bloch sphere
with high fidelity. The tunnel barrier and the quantum dot levels are not independently
controllable, neither by a static gate voltage nor an AC signal. In gated or lithographically
defined architectures, the applied electric field always contains some planar components
that couple various parts of the device and capacitive coupling can be significant, making
local control by an electric field challenging in nanoscale structures. Consequently, there is a
need for defining a realistic pulsing scheme that can take into account the specificities of the
architecture.

III.II Root-of-SWAP with Surface Acoustic Waves (SAWs)

Secondly, we investigate theoretically and by numerical simulation the possible ways of
implementing a two qubit Root-of-SWAP operation in a SAW quantum computer implemen-
tation as proposed by Barnes [19]. Firstly, a scheme proposed by Owen and Barnes [165],
where electrons collide in a harmonic confining potential, will be investigated. This method
was shown to work in 1D. This will be confirmed, and then extended to 2D to verify that
it is still feasible in a more realistic scenario. Additionally, a different method, where the
electrons interact by tunneling across a double dot, will be investigated. The methods will
then be compared. This work assumes that the SAW system is implemented in a Gallium
Arsenide (GaAs) semiconductor structure, but is easily generalisable to other materials, and
a significant part is in fact applicable to general double quantum dot systems.
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Fig. 1.2 (a) False-coloured SEM image of the qubit device. Gate electrodes G1 to G4 are
used to control the qubit electrostatically. Gate C helps to confine the qubit, while R is
the electron reservoir. This system is shown operating as a single qubit. The electron spin
resonsnce (ESR) line seen on the left would not be used when operating as a charge-only
qubit (no spin). (b) the inset shows a schematic of how an SET positioned under the dot is
used as a detector. Image taken from [231].
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A large part of this work focuses on investigating a quantum computer implementation
proposed by Barnes et al [19]. This implementation would use Surface Acoustic Waves
(SAWs) to carry single electrons, to be used as spin qubits (i.e. spin up/down corresponds
to |1⟩/ |0⟩ qubit state. SAWs are coupled electromechanical waves that can be generated in
piezoelectric materials. An interdigitated transducer consisting of two interlocking comb-
shaped arrays of metallic electrodes is placed on such a material, e.g. quartz, and oscillating
electric field is applied to every other electrode. This causes a sinusoidal electric field that
generates a traveling mechanical wave in the material, which in turn generates a sinusoidal
electric field via the piezoelectric effect. This effectively causes a sinusoidal electric field to
travel along the material. Such a wave can then be used to capture single electrons to use
as qubits from a 2 Dimensional Electron Gas (2DEG). Such a 2DEG can be created in a
semiconductor structure - see Fig. 1.3 below.

Fig. 1.3 The structure of a typical SAW wafer and its conduction band and electron wave-
function is shown on the right. If the well is sufficiently narrow, and the electron density
sufficiently low, then only the first sub-band in the confinement direction will be occupied.
Image from [97].

Proposed device schematic

Single electrons carried by SAW potential would travel along one-dimensional channels,
with single qubit rotations being realised by magnetic split gates, and two qubit Root-of-
SWAP operation being realised by bringing the channels together for some time, so that the
electrons can interact and entangle as per Eq. 1.5. While such an implementation has not
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yet been fully demonstrated experimentally, single electron transport by SAWs already has
[158], [105], [120], [31], [63]. A protocol for Fermionic qubit transport and spin control has
been described by Arvidsson-Shukur, H.V Lepage et al [14]. Another important feature of
such a system is the constant confinement of electrons by the SAW potential. Fermionic
particles have the advantage over photons in that they interact and entangle much more easily.
However, since they are massive, they would usually tend to spread ballistically, which is an
unwanted effect that would cause increasing errors in the system. But with SAW confinement
present, this potential drawback is completely negated. The system is also readily scalable -
electrons can be reflected back at the end of their channels, while the single and two qubit
gates are adjusted to continue the computation. Many parallel channels can be used, with
the Root-of-SWAP operation enabling swapping and interaction between them. Overall,
such a SAW system is a promising quantum computer implementation. While relative lack
of maturity holds this technology back, for example issues with keeping the electrons cold
enough to stay confined in the SAW potential, and reading them out with high fidelity, there
has been a lot of progress towards low-error single- and two-qubit operations [217].

Fig. 1.4 Device schematic diagram showing the gate pattern layout for a SAW quantum gate
network. Black and white vertical lines represent the SAW effective potential. The network
of gray lines represents a set of Q1DC. Black dots represent qubits. White squares on the
right hand side represent readout gates. Image from [19].
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Fig. 1.5 CNOT in terms of Root-of-SWAP and single qubit rotations. The diagram illustrates
the equivalency of the two operations, as one can be used to express the other. It also shows
an example of how the universal gate set can be used to express an operation/gate from
outside the set. Image from [19].

III.III Mapping the charge states of semi-isolated DQDs using a single
donor device

We demonstrate that single donor structure can reliably be engineered from doped quan-
tum dots by taking advantage of the tunability of the electron tunneling rates as well as
the interplay, at low temperatures, between disorder conferred by randomness in dopant
distribution and electron-electron interaction originating from the high doping concentration
[171, 170, 22, 202]. For this purpose, phosphorous-doped silicon quantum dots offers ideal
conditions for experimentation. This work on mapping the charge states of semi-isolated
double quantum dots using a single donor device consists of an experimental part, conducted
by Dr Thierry Ferrus, and a simulation and theory part, conducted by me. The goal is to
show that single donors can be isolated in a single electron transistor (SET) device, which
affects its characteristics. This device can then be used as a detector to map the charge states
of a nearby DQD. I show that isolation of single donors explains the observed transport
characteristics of the device, and that one can indeed use it to read out the charge state of
a capacitively coupled DQD. Such a detector is an important part in the toolbox of many
quantum computing architectures.





Chapter 2

Methods and Theory

I Numerical methods

Simulating the dynamics of a general nonrelativistic quantum system requires solving the
Schrödinger equation, by the 6th postulate of quantum mechanics. The time evolution is
described by the Time-Dependent Schrödinger Equation (TDSE) [26]:

ih̄
∂

∂ t
|ψ(rrr, t)⟩= Ĥ |ψ(rrr, t)⟩ , (2.1)

where Ĥ is the Hamiltonian operator.
The stationary states (eigenstates) of the system are found by solving the Time-Independent

Schrödinger Equation (TISE) [26]:

Ĥ |ψ(rrr, t)⟩= E |ψ(rrr, t)⟩ , (2.2)

where Ĥ is the Hamiltonian operator and E is the eigenenergy. Finding the eigenstates
(performing the eigendecomposition) is necessary to find the ground/excited state of the
system that could be assigned to a |0⟩/|1⟩ qubit state. Knowing the eigenstates and their
energies also helps to understand, visualise and characterise the system dynamics.

Analytical solutions to the Schrödinger equation exist only in a limited number of simple
cases. General solutions to the equation require the use of numerical methods. To solve
the Schrödinger equation numerically, a space/time discretisation needs to be applied as a
computer only has finite memory, and has to be able to index the space/time coordinate in a
discrete way. Solving the problem numerically also poses many challenges - sophisticated
algorithms must be used to avoid compounding errors and unfeasible computation times.
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In this work, a custom Graphical Processing Unit (GPU)-accelerated solver written in
C++ and CUDA [164], and rewritten later in Python, was used for majority of results. This
program was already being used in the group at the time my work began. We have rewritten
it, together with Dr Hugo Lepage, from C# to C++ and for the GPU kernel from OpenCL
to CUDA, as well as extended its functionality from 1 particle systems to N particles in
any number dimensions. The code was later again rewritten in Python instead of C++, to
make it easier to develop and avoid issues with explicit memory management. Various other
minor improvements and tweaks have been added as well. Work on this method was done in
the group before by Jacek Mosakowski, Matthew Dean and Edmund Owen, and while we
acknowledge their contributions, there is no direct link between their work and the program
used here. I have also implemented the eigensolver method in momentum space, described
in this chapter, for finding the initial condition for the time-dependent solver.
CUDA library was used to perform matrix diagonalisation on the GPU, and FFTW libray
was used to calculate the Discrete Fourier Transform. On top of the main program, MATLAB
(with its in-build functions) was also used for smaller calculations and testing. The relevant
code can be found in the Appendix.
As for the hardware, majority of the calculations were done on a server jointly build by me
and Hugo Lepage for this project specifically. The server specifications are:

• GPUs: 7 x GTX 1080 Ti 11GB GDDR5X

• Memory: 128 GB of 2133 MHz DDR4 ECC RAM

• CPUs: 2 x Intel 8 Core Xeon E5-2620

• Storage: 512 GB SDD + 2TB HDD

The GPUs were later upgraded to the faster GTX 2080 Ti, while the specifications of
other components did not change significantly. This GPU upgrade yielded an approximately
20% speedup in code execution.

I.I Spatial Discretisation - Eigensolver

The nonrelativistic 1D Hamiltonian Ĥ of a spinless particle in a potential is given by [26]:

Ĥ =− h̄2

2m
d2

dx2 +V (x) (2.3)

where m is the particle mass and h̄ is the reduced Planck constant. Note that in condensed
matter systems considered here, the mass m must be replaced with an effective mass me f f .
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The effective mass is the mass the particle seems to have in the bulk material, owing to the
influence of the periodic atomic potential. For our purposes, it can be considered a constant
of the material [125]. Its value in GaAs is 0.067me in terms of the free electron rest mass
me = 9.10938356 · 10−31 kg. To discretise this equation, the position is discretised as an
array of some length N. The potential V and wave function ψ(x) will therefore also be
arrays of length N, while the Hamiltonian matrix H will have N2 elements. The choice of
N will depend on the particular problem - the greater it is, the closer the solution will be
to the continuum limit. However, increasing the array size will also increase memory and
time required to solve the problem, proportionally to the Hamiltonian size. In practice, N is
increased until an acceptably small error in wave function normalisation is reached, while
the simulation run time is reasonable.

The treatment of second derivative operator d2

dx2 appearing in the equation requires extra
attention - it needs to be expressed as a finite difference. By Taylor-expanding the wave
function in forward and backward directions to second order we get:

|ψ(x+dx)⟩= |ψ(x)⟩+ d |ψ⟩
dx

dx+
1
2

d2 |ψ⟩
dx2 dx2 +O(dx3), (2.4)

|ψ(x−dx)⟩= |ψ(x)⟩− d |ψ⟩
dx

dx+
1
2

d2 |ψ⟩
dx2 dx2 +O(dx3). (2.5)

By adding these equations and solving for the second order differential operator we get:

d2 |ψ⟩
dx2 =

|ψ(x+dx)⟩−2 |ψ(x)⟩+ |ψ(x−dx)⟩
dx2 +O(dx3). (2.6)

This equation allows us to express the Hamiltonian as a discretised matrix, since |ψ(x+dx)⟩
is just the next array element of |ψ(x)⟩ (and |ψ(x−dx)⟩ is the previous one). The elements
that extend beyond the array to the left and right are handled by applying a Dirichlet (infinite
hard wall) boundary condition - these elements are effectively set to be 0. This requires that
the solution (wave function |ψ(x)⟩) goes to 0 sufficiently fast on the side boundaries. It is
enforced by choosing a potential such that the wave function is localised toward the center of
region of interest. This is not a stringent condition, as the same is also true analytically for
bound states.
Writing down the Hamiltonian matrix explicitly gives:

Ĥ |ψ(x)⟩=


V (x1)+Hk −2Hk . . . 0

−2Hk V (x2)+Hk −2Hk . . .
...

... . . . . . .

0 . . . −2Hk V (xN)+Hk




x1

x2

. . .

xN

 (2.7)
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where Hk =− h̄2

2m
d2

dx2 is the kinetic term.
This tridiagonal matrix can then be numerically diagonalised using standard packages like

Eigen [66] to find the eigenvectors (wave functions) and their eigenenergies. This method
can be easily extended to higher dimensions and more particles. in 3D, the second derivative
operator d2

dx2 is replaced by ∇2 operator. The wave function can still be represented by a
vector of size N3, with some indexing scheme to assign 3D position to the array elements. A
row-major order is used here, where the last index is varying the fastest. In general, a 3D
Hamiltonian for M particles is:

Ĥ =
M

∑
n=1

− h̄2

2mn
∇

2
n +V (x1,x2, ...xM), (2.8)

where n is the particle index. The wave function size scales as NdM, where N is the number
of points in each dimension, d is the number of dimensions and M is the number of particles.
The Hamiltonian matrix is naturally the square of this size. This exponential growth of
required memory causes many particle problems to become intractable very fast. While the
above method works well for 1 particle in 2D or 2 particles in 1D, for 2 particles in 2D,
which is the interest of this work, the problem is not directly solvable on currently existing
hardware. For about 100 points which are required for stability of the time dependent solver,
the Hamiltonian would take thousands of terabytes of memory, well beyond the capabilities
of any existing GPU hardware.
Since the matrix is large but sparse - tridiagonal - sparse solver packages were tried to solve
this problem. However, these methods suffer from some limitations. They are often only able
to find a single eigenstate, closest to an initial guess, and the available routines do not benefit
from GPU acceleration. Moreover, it was found that they can have issues with converging
for such large matrix sizes. In general, we are interested in finding multiple eigenstates, and
wish to leverage the GPU hardware available. Therefore, an alternative was found - to solve
the Schrödinger equation in momentum space.

I.II Eigensolver in Momentum Space

Eigenfunctions that are well localised converge rather fast in momentum space. It is found
that around 10 points in each dimension gives a very good result that is stable when used as an
initial condition for the time-dependent solver. Therefore, by solving a Fourier-transformed
Schrödinger equation with reduced number of points for discretisation, and then inverse
Fourier-transforming the result, padding it beforehand to about 100 real-space points, accurate
eigenfunctions can be found for 2 particle 2D systems. A real space wave function in 1D can
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be written as a sum (integral in continuous case) of the momentum eigenfunctions:

ψ(rrr) =
∫

kkk−space
φ(kkk)ψk(rrr)d(((k), (2.9)

where ψk(rrr) are the momentum eigenfunctions.
Due to the canonical relation between momentum and position operators:

ppp =−ih̄
∂

∂ rrr
, (2.10)

the eigenfunctions are:

ψk(rrr) =
1

√
2π

d eikkk·rrr, (2.11)

where d is the dimension index. Therefore, the real space wave function can be written as:

ψ(rrr) =
1

√
2π

d

∫
kkk−space

φ(kkk)eikkk·rrrd(((k). (2.12)

This is just an inverse Fourier transform:

ψ(rrr) = F−1(
φ(kkk)

)
, (2.13)

where F−1 denotes the inverse Fourier transform.
By similar logic, the inverse is also true:

φ(kkk) = F
(
ψ(rrr)

)
, (2.14)

where F denotes the Fourier transform.

For a numerical solution, momentum space can be discretised in multiples of 2π

L , where
L is a real space extent over which the wave function should have decayed close to 0 near the
edges. Defining some cutoff N, momentum will take the values:

kkkn = n
2π

L
, (2.15)

where n = [−N,−N +1, ...,0,1, ...,n].
When we Fourier-transform the Schrödinger equation into momentum space, the ki-

netic term − h̄2

2m∇2 will become h̄2

mL2 (cosh(kL)−1) owing to discreteness and the canonical
momentum-position relation (Eq. 2.10). The Fourier-transformed potential matrix element
becomes
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V̂kq = (2π)
d
2

N

∑
r

e−iqqq·rrrV (rrr)eikkk·rrr =

(2π)
d
2

N

∑
r

V (rrr)ei(kkk−−−qqq)·rrr = F (V (rrr))(k−q).

(2.16)

The elements of the Hamiltonian matrix to be solved by diagonalisation in this method
take the form

Hkq =
h̄2

mL2 [cosh(kL)−1]δkq +V̂kq. (2.17)

With a fine enough resolution„ the kinetic term will become indistinguishable from a
simpler form of k2

2m . The Fourier-transformed potential matrix element will read:

Hkq =
k2

2m
δkq +V̂kq. (2.18)

For the discretised case, the Fourier integral is evaluated using a Fast Fourier Transform
(FFT) algorithm. The Hamiltonian matrix equation to be solved by diagonalisation in this
method looks like:

Ĥ |φ(kkk)⟩=


k2

1
2m +F

(
V (rrr)

)
(0) F

(
V (rrr)

)
(k1 − k2) . . . F

(
V (rrr)

)
(k1 − kN)

F
(
V (rrr)

)
(k2 − k1)

k2
2

2m +F
(
V (rrr)

)
(0) . . . F

(
V (rrr)

)
(k2 − kN)

...
... . . . ...

F
(
V (rrr)

)
(kN − k1) F

(
V (rrr)

)
(kN − k2) . . .

k2
N

2m +F
(
V (rrr)

)
(0)




k1

k2

. . .

kN


(2.19)

Note that this matrix is not sparse as was the case in real space. This could be thought of
as reducing the memory space (smaller matrix) at the cost of computational complexity -
every matrix element has to be calculated (this is actually reduced by almost half owing
to the matrix being Hermitian :Ĥ = Ĥ†. However due to the efficiency of FFT algorithms,
the problem is still relatively fast to solve. This method extends readily to two or more
particles by indexing the wave function accordingly as described in the previous subsection.
A two-particle 2D problem with 10 points in each dimension can be solved in tens of minutes
on a modern desktop computer, and gives an accurate enough result to be used as a starting
point for the time-dependent solver and keep the errors small (<1%). It is found that the
above method of solving the Hamiltonian is very competitive compared to sparse matrix
diagonalisation in a wide variety of realistic potentials, while being able to take advantage
of GPU acceleration readily, and being able to find a large number of eigenstates (up to the
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momentum mode cutoff imposed). It is however required that the underlying potential be
well-approximated by a limited number of momentum eigenfunctions.

I.III Temporal Discretisation - Staggered Leapfrog Algorithm

To solve the TDSE numerically (Eq. 2.1), the time derivative ∂

∂ t |ψ(rrr, t)⟩ must be discretised.
Some standard approaches include the Euler or Crank-Nicholson methods. However for the
case of Eq. 2.1, these methods either diverge fast, or are very computationally intensive [16].
Here a Staggered Leapfrog method is used instead, as seen in a paper by Maestri and Landau
[153] on 2 particle wave packet simulation/animation. This algorithm is self correcting - the
normalisation (wave function modulus) error will oscillate about zero. The amplitude of
this oscillation can be brought to acceptable level (<1% of modulus, which is equal to 1 for
wave functions) with small enough step in time and space discretisation. The derivation of
this algorithm for 2 spinless particles in 1D based on [153] is as follows. Natural units are
used here for simplicity (h̄ = c = 1). The TDSE equation to be solved (Eq. 2.1) with explicit
Hamiltonian is:

ih̄
∂

∂ t
|ψ(x1,x2, t)⟩= Ĥ |ψ(x1,x2, t)⟩ , (2.20)

Ĥ =− 1
2m1

∂ 2

∂x12 −
1

2m2

∂ 2

∂x22 +V (x1,x2). (2.21)

The wave function can be discretised in time and space by using an evenly spaced grid :

ψ(x1,x2, t) = ψ(x1 = l∆x1,x2 = m∆x2, t = n∆t) = ψ
n
l,m, (2.22)

where n, l,m are integers and ∆ denotes step size in space/time. In this discrete notation,
and by using the finite difference expression for the second derivative operator as in subsec-
tion2.1.1, the right hand side of Eq. 2.20 becomes:

Ĥψ =−
ψl+1,m −2ψl,m +ψl−1,m

2m1∆x2
1

−
ψl,m+1 −2ψl,m +ψl,m−1

2m2∆x2
2

+Vl,mψl,m. (2.23)

The time derivative in Eq. 2.20 can be written by approximating the formal time evolution
operator:

ψ
n+1
l,m = e−i∆tĤ

ψ
n
l,m ≈ (1− it∆Ĥ)ψn

l,m. (2.24)
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However, this simplistic approximation is unstable and will diverge, as the eigenvalue
equation has modulus

√
1+E2∆t2 - it will increase with time. One improvement that can be

made is to use a central difference algorithm to expand the following:

ψ
n+1
l,m −ψ

n−1
l,m = (e−i∆tĤ − ei∆tĤ)ψn

l,m
∼=−2i∆tĤψ

n
l,m. (2.25)

In conjunction with Eq. 2.23 this gives:

ψ
n+1
l,m

∼= ψ
n−1
l,m −2i

[{( 1
m1

+
1

m2

)
λ +∆tVl,m

}
ψ

n
l,m −λ

{ 1
m1

(ψn
l+1,m +ψ

n
l−1,m)

+
1

m2
(ψn

l,m+1 +ψ
n
l,m−1)

}]
,

(2.26)

where ∆x1 = ∆x2 is assumed for simplicity (this will usually be the case, and always is in this
work), and λ = ∆t

∆x2 . This equation gives an explicit solution, where only two past time values
must be stored simultaneously. While Eq. 2.26 produces a stable and accurate solution, it
is found that it does not conserve probability very well. A final improvement is made by
separating the wave function into real and imaginary parts to make use of that extra degree
of freedom:

ψ
n
l,m = un

l,m + ivn
l,m (2.27)

The algorithm in Eq. 2.26 then separates into a pair of coupled equations:

un+1
l,m = un−1

l,m +2
[{( 1

m1
+

1
m2

)
λ +∆tVl,m

}
vn

l,m +λ
{ 1

m1
(un

l+1,m −un
l−1,m)

+
1

m2
(un

l,m+1 +un
l,m−1)

}]
.

(2.28)

vn+1
l,m = vn−1

l,m −2
[{( 1

m1
+

1
m2

)
λ +∆tVl,m

}
un

l,m −λ
{ 1

m1
(vn

l+1,m − vn
l−1,m)

+
1

m2
(vn

l,m+1 + vn
l,m−1)

}]
.

(2.29)

The eponymous staggering comes from evaluating the real and imaginary parts at staggered
times (off by half the time step):

[un
l,m,v

n
l,m] = [Reψ(x, t), Imψ(x, t +

1
2

∆t)]. (2.30)
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The definition of probability density is then also different for integer and half-integer time
steps:

ρ(x, t) = | Reψ(x, t) |2 + Imψ(x, t +
1
2

∆t)Imψ(x, t − 1
2

∆t), (2.31)

ρ(x, t +
1
2

∆t) = Reψ(x, t +
1
2

∆t)Reψ(x, t − 1
2

∆t)+ | Imψ(x, t) |2. (2.32)

These definitions reduce to the standard one for infinitesimal ∆t, and provide an algebraic
cancellation of errors so that probability is conserved - the algorithm is self-correcting
and (small) errors will oscillate between a positive and negative value rather than build up.
Overall, the algorithm is very stable if sufficiently small values of ∆t and ∆x are used.

Staggered Leapfrog Algorithm in Momentum Space

Similarly to the method of eigensolving the Hamiltonian described above, we can attempt to
solve the time-dependent evolution in momentum space. This can lead to similar benefits - the
size of the problem is reduced, which is expected to lead to lower memory and computation
time requirements. The prerequisites for this method to be appropriate are also similar to the
time-independent case - the wave function should always be well-described by a relatively
small number of momentum eigenfunctions at any time, so that the computational size can
be reduced while preserving accuracy. Again, it is found that a wide range of low-energy
wave functions of realistic potentials meet these requirements. Additionally, if the potential
is time-dependent (which is usually the case, as otherwise an iterative solution would usually
not be necessary), we would require it to change slowly enough in time such that the evolution
is adiabatic, and the wave function does not become too steep or squeezed, as that will make
it difficult to approximate it with a limited number of momentum eigenfunctions.

To time-evolve the momentum-space wave function φ(kkk), Equations 2.28, 2.29 need to
be Fourier-transformed. Let us first split the momentum wave function φ(kkk), which we will
discretise in time and momentum as φ n

o, j, into the real and imaginary parts:

φ
n
o, j = f n

o, j + ign
o, j. (2.33)

Then, we transform Equations 2.28 and2.29 into momentum space:

f n+1
o, j = f n−1

o, j +∆t{2I
(
F (V (rrr)ψ(rrr))o, j

)
+

(
k2

o
m1

+
k2

j

m2

)
gn

o, j}, (2.34)
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gn+1
o, j = gn−1

o, j −∆t{2R
(
F (V (rrr)ψ(rrr))o, j

)
+

(
k2

o
m1

+
k2

j

m2

)
f n
o, j}, (2.35)

where ko,k j are momentum values corresponding to discretised points o, j, and R/I

denote the real/imaginary part of their argument. The momentum is discretised as per Eq.
2.15.

A significant issue arises with this method - at each time step, we need to calculate
F (V (rrr)ψ(rrr))o, j, a Fourier transform element of a point-wise product of real-space potential
and wave function. Both of these in general change in time, so this value needs to be recalcu-
lated. This forces us to keep the real wave function and potential in memory, and to spend
significant overhead on performing the Fourier transforms. Alternatively, the convolution
theorem can be used to simplify this calculation, however calculating the convolution at
every time step is a significant task as well. The momentum-space method turns out to
be significantly advantageous only in some cases. Specifically, the number of momentum
modes must be small, meaning that the wave function remains close to the first few energy
eigenstates. Secondly, we must have explicitly closed boundary conditions- for example,
implementing an infinite square well with this method would require us to actually enforce
very high potential on the boundaries, unlike the real-space case, where this is enforced by
default. In a very general case, the overhead of performing the discrete Fourier transform
every time step tends to outweigh the benefit of working in a smaller computational space.
However, if the problem is scaled up to a large enough size, the momentum method will
win eventually in terms of performance. We find that overall, the real space method is more
general, while the momentum space method has specific cases where it is superior.

I.IV Indexing of the wave function in computer memory

To store the wave function in memory, it is simplest and most efficient to use a one-
dimensional array, irrespective of the actual arrangement of dimensions of the physical
wave function. We choose to use a row-major order indexing, which means the last dimen-
sion is contiguous in memory. We choose to arrange the “dimensions” in the following order,
assuming a general case of Np particles with Ns spin states and Nd spatial positions in d
spatial dimensions (d = x,y,z) : Np,Ns,Nx,Ny,Nz, with some of these possibly being equal
to 1. This means that z- position is contiguous in memory, while number of particles has the
largest stride. The total size of the wave function is 2NpNsNxNyNz floats (the factor of two is
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due to the real and imaginary parts of a complex number). The wave function is indexed by a
tuple (p,s, i, j,k) of zero-based indices. Given this tuple, we can calculate the corresponding
position in memory n:

n = k+ jNz + iNzNy + sNzNyNx + pNzNyNxNs. (2.36)

Sometimes we wish to do the inverse - calculate the tuple of indices given n. This can be
achieved by the following algorithm:

p = ⌊n/(NzNyNxNs)⌋
n1 = n− p(NzNyNxNs)

s = ⌊n1/(NzNyNx)⌋
n2 = n1 − s(NzNyNx)

i = ⌊n2/(NzNy)⌋
n3 = n2 − i(NzNy)

j = ⌊n3/Nz⌋
k = n3 − jNz,

(2.37)

where ⌊a/b⌋ denotes integer division of a by b (rounding the result down to an integer).

II Inclusion of spin - Second Quantisation

Second quantisation is a formalism used to analyse many-particle systems. It is sometimes,
perhaps more descriptively, called the occupation number representation. In this approach,
quantum many-body states are represented in the Fock state basis. A Fock (number) state is a
state of a well defined number of particles. So-called creation and annihilation operators are
introduced to construct the Fock states [7]. This approach is useful, as it accounts for Fermi
exclusion principle - Fock space representation explicitly gives the number of particles in a
given state. Fermi exclusion, which says that no two fermions can occupy the same quantum
state, is applicable in this work, as we are dealing with electrons, which are fermions (spin 1

2
particles). According to Fermi-Dirac statistics, the fermionic many-body wave function must
be anti-symmetric under exchange of any two particles:

ψ(rrr111, ...,rrriii, ...rrr jjj, ...) =−ψ(rrr111, ...,rrr jjj, ...rrriii, ...) (2.38)
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We can see how this requirement enforces Fermi exclusion: if particles i and j are identical,
then if they occupy the same state, i.e. rrriii = rrr jjj, then this implies that the whole wave function
must be equal to zero - such a state is prohibited. Usually, this symmetrisation is handled by
representing the many-particle state as a linear combination of determinants of single-particle
states (for fermions). However, in second quantisation, symmetry is automatically enforced
by the creation (c†) and annihilation (c) operators. For a single mode state, these operators
act the following way:

c† |0⟩= |1⟩
c |0⟩= 0

c† |1⟩= 0

c |1⟩= |0⟩

(2.39)

where |0⟩ is a vacuum state, and |1⟩ is a state with 1 particle in it. Note how particle
statistics are enforced by operator action - trying to add a particle to already occupied state
quenches it (gives a 0). Note that this is not equal to the vacuum state |0⟩ -rather, it is a scalar
0 denoting lack of a quantum state. Similarly, trying to remove a particle from a vacuum
state also quenches it. For a more meaningful example, consider a situation where there are
N possible spatial positions, denoted i and j for particles 1 and 2 respectively, for a spin-1

2
particle that can be spin up (↑) or down (↓) in some basis. Then, the following many particle
basis states are possible:

|↑↑⟩i j = c†
i↑c†

j↑ |0⟩ , i ̸= j

|↓↓⟩i j = c†
i↓c†

j↓ |0⟩ , i ̸= j

|↑↓⟩i j = c†
i↑c†

j↓ |0⟩ ,

|↓↑⟩i j = c†
i↓c†

j↑ |0⟩ ,

(2.40)

where c†
is1

is the creation operator for a given position and spin. These fermionic creation
operators obey the anti-commutation relation {c†

is1
,c†

js2
} = 0. Therefore, the basis states

are also related by |↓↑⟩i j = −|↑↓⟩ ji. States with double spatial occupancy and same spin,
like |↑↑,0⟩ are not allowed. By extending the above to N spatial sites, corresponding to a
chosen spatial discretisation, we can construct valid basis states that allow us to include
spin in the numerical simulation. For 2 particles and N spatial sites, without considering
spin, there would be N2 two-particle basis states, as there are N possibilities of placing the
first particle, and again N for the second. With second quantisation, there will be 4N(N−1)

2
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single-occupancy states (states where particles are at different positions), as there are N ways
of placing the first particle, N −1 of placing the second to avoid double occupancy, there are
22 = 4 spin combinations, and we have to divide by 2 because particles are indistinguishable.
In addition, there will be N double occupancy |↑↓⟩ states, one for each site. In total, there
are therefore 2N2 −N second quantisation states, approximately double the amount without
considering spin for large N. By indexing the wave function array with respect to these states,
spin can be included at the cost of only a constant factor of 2 in the size of wave function
(for 2 particles). This can be used both in the eigensolver and the time-dependent solver,
allowing to find two-particle eigenstates with spin, and include explicit spin dependence in
the Hamiltonian, extending the possible scope of scenarios to be simulated.

II.I Generalising to many particles

The work presented in this thesis will be followed up by simulations of more than two spin-1
2

particles - this is computationally possible owing to continuous advances in GPU hardware.
As the cost of including spin will extend the computation time be a factor of approximately
4, it will still be doable in around a day or two. In this general case, a wave function can be
constructed and manipulated in the following way.

The wave function is separated into spin |s⟩ and spatial |x⟩ components. The spin
component for a single particle is a vector in the z-basis:

|↑⟩=

(
1
0

)
,

|↓⟩=

(
0
1

)
.

(2.41)

The complete one-particle wave function is obtained by performing the outer product of
the spin and space components:

|ψP1⟩= |s⟩⊗ |x⟩ . (2.42)

The many-particle wave function is then obtained by simply performing the outer product
of the single-particle wave functions, for N particles.

|ψ⟩= |ψP1⟩⊗ |ψP2⟩ ...⊗|ψPN⟩ . (2.43)
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To then recover the spatial wave function for a specific particle of a given spin, for
example to plot it or calculate single-particle observables, we need to trace out all the other
degrees of freedom.

III Using the density matrix formalism

To include mechanisms such as noise, relaxation, dephasing, which cause loss of coherence
by randomly affecting the wave function in a non-unitary (non-reversible) way, a statistical
description using density matrices is required. This is also needed to describe thermalisation
processes.

A density matrix is needed to include the “classical’ (as opposed to quantum) probabil-
ity/randomness. A quantum state |ψ⟩ on Hilbert space can be in a superposition of some
eigenstates of the measurement operator we’re applying to it. It’s a familiar result that there is
then some probability of measuring the state in each of the eigenstates, with the process being
random, as far as the observer is concerned. However, this quantum randomness stemming
from |ψ⟩ being in a superposition is very different from classical randomness, such as tossing
a coin. Here, we also observe a random outcome, but a coin cannot be used for quantum
computation. So-called “pure” states, described by vectors |ψ⟩ , cannot be used to express
statistical (incoherent, as opposed to a coherent superposition) mixtures. These mixtures,
which could result from loss of coherence of an initial pure state, or otherwise, always occur
in a realistic experiment with sources of noise. We need the density matrix formalism to
incorporate not only the quantum coherence (like in a superposition), but also the classical
lack of knowledge about a state (like a coin that was tossed, but the result is unknown to us).

A density matrix ρ for a pure state |ψ⟩ is given by:

ρ = |ψ⟩⟨ψ| . (2.44)

It has the following properties:

ρ
2 = ρ(projection),

ρ
† = ρ(hermiticity),

ρ ≥ 0(positivity),

Trρ = 1(normalisation).

(2.45)

For clarity, the trace of an operator O is (where ρ is technically a projection operator, so
the following applies):
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TrO = ∑
n
⟨n|O |n⟩ , (2.46)

where n are the elements of some complete basis. For example, for some projection operator
O = |ψ⟩⟨φ |:

TrO = ∑
n
⟨n|ψ⟩⟨φ |n⟩= ∑

n
⟨φ |n⟩⟨n|ψ⟩= ⟨φ |ψ⟩ , (2.47)

using the resolution of identity 1 = ∑n |n⟩⟨n|.
The positivity property in Eq. 2.45 means that the eigenvalues of ρ are greater or equal

to zero:

⟨φ |ρ|φ⟩= ⟨φ |ψ⟩⟨ψ|φ⟩= | ⟨φ |ψ⟩ |2 ≥ 0. (2.48)

This essentially means that probabilities should not be negative. We can calculate expectation
values of observables w.r.t. a quantum state described by a density matrix:

< O >ρ= Tr(Oρ) = Tr(ρO), (2.49)

where we note that the trace has a cyclic property.
Density matrices are used for statistical description of ensembles of quantum states.

Imagine we are working with an ensemble of N states, each of which is described by a
familiar vector on a Hilbert space |ψ⟩. The density matrix ρ = |ψ⟩⟨ψ| will then accurately
describe what we observe when drawing states from that ensemble and making measurements
on them. An important property of, and a test for pure states, is:

Trρ
2 = 1. (2.50)

This so far has not given us much more than using Hilbert space vectors. However, density
matrix formalism is truly useful when we are working with mixed states. Mixed states
describe a situation when we have an ensemble of quantum states, and they are not all
described by the same Hilbert vector. If we have a total of N states in the ensemble, suppose
Ni are in some quantum state |ψi⟩, and ∑i Ni =N. When drawing from the ensemble randomly,
the chance to find a state i that is described by a vector |ψi⟩ is given by pi =

Ni
N . This mixed

state can then be described as a density matrix that is the convex sum of the pure density
matrices ρi = |ψi⟩⟨ψi|:

ρmix = ∑
i

piρi. (2.51)
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The expectation values of observables are still given by Eq. 2.49:

< O >ρmix= Tr(Oρmix). (2.52)

These mixed states have the following property:

Trρ
2 < 1. (2.53)

Tr(ρ2) measures the “purity” of a state, since it is equal to 1 for pure states, and is strictly
less for mixed states. For a maximally mixed state, which is an equal mixture of all possible
states in the Hilbert space:

Trρ
2 =

1
d
> 0, (2.54)

where d is the dimension of the Hilbert space. Such a maximally mixed state expresses
complete lack of knowledge about what states are actually in our ensemble.

Just as a wave function evolves in time according to the Schrödinger equation, we can
derive a similar equation for the density matrix. For |ψ⟩:

ih̄
∂

∂ t
|ψ⟩= Ĥ |ψ⟩ . (2.55)

A similar time derivative for ρ leads to:

ih̄
∂

∂ t
ρ = ih̄∑

i
pi(

∂

∂ t
|ψ⟩⟨ψ| |ψ⟩ ∂

∂ t
⟨ψ|) = ∑

i
pi(Ĥρ

pure
i −ρ

pure
i Ĥ) = [Ĥ,ρ], (2.56)

where ρ
pure
i are the constituent pure matrices that ρ can be decomposed into.

The solution of the above von Neumann equation yields a unitary time shift operator
U(t, t0) that is able to evolve the quantum state in time, similar to unitary time evolution for
a wave function |ψ⟩:

U(t, t0) = e
−i
h̄ Ĥ(t−t0), (2.57)

where t0 is some initial starting time. This operator is then applied to ρ the following
way:

ρ(t) =U(t, t0)ρ(t0)U†(t, t0). (2.58)
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Note that as ρ is a matrix, the Hermitian conjugate of the time shift operator needs to
also be applied on the R.H.S. This is the case for all unitary operators acting on ρ .

As an example illustrating the difference between state vectors and density matrices,
let us look at a single spin-1

2 qubit that is represented in the z-basis. Suppose we have the
following maximally mixed state:

ρmix =
1
2
(|↑⟩⟨↑|+ |↓⟩⟨↓|). (2.59)

This state has equal probabilities (1
2) of being measured in the |↑⟩ and |↓⟩ states, but is

not in a superposition state like |ψ⟩= 1√
2
(|↓⟩+ |↑⟩)- it is instead in the state |↑⟩ half of the

time it is measured, and in the state |↓⟩ the remaining half of the time. This represents our
lack of knowledge about which state we sample from the ensemble, rather than a quantum
measurement randomness due to superposition. Note that this maximally mixed matrix is
just diagonal.
Instead, a superposition state density matrix would look like this:

ρsup =
1
2
(|↓⟩+ |↑⟩)(⟨↓|+ ⟨↑|) = 1

2
(|↑⟩⟨↑|+ |↓⟩⟨↓|+ |↑⟩⟨↓|+ |↓⟩⟨↑|). (2.60)

The off-diagonal matrix elements |↓⟩⟨↑| , |↑⟩⟨↓| represent the quantum correlation due to
superposition.

So far the use of density matrices has allowed us to describe statistical ensembles of
quantum states, but we were still restricted to unitary operations. However, the formalism
truly shines because it allows us to use non-unitary operators that can describe non-unitary,
irreversible processes such as decoherence. A Lindblad master equation is an extension of
the von Neumann equation 2.56 that allows for non-unitary time evolution:

∂

∂ t
ρ =− i

h̄
[Ĥ,ρ]+

N2−1

∑
i=1

γi(LiρL†
i −

1
2
{L†

i Li,ρ}). (2.61)

The new non-unitary operators Li are called Lindblad or jump operators that represent some
non-unitary processes, while the γi are the rates at which these processes occur. For example,
in a case where one allows the system to undergo relaxation and excitation (emission/absorp-
tion) due to an interaction with a thermal bath, jump operators L1 = a, L2 = a† would be
used, where a/a† is the annihilation/creation operator (in the energy basis).

Now we can appreciate why the density matrix formalism is required to describe a
realistic quantum experiment. Imagine that we begin some quantum computation in a known
fiducial pure state. The state will experience noise, dephasing, relaxation of energy etc.
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during the experiment. All these processes are random and irreversible, and thus cannot
be described as unitary operators on a Hilbert space. They can however be described by L
operators acting on density matrices. Our state will gradually become more mixed as a result
of these effects. The resulting mixed density matrix will express our lack of knowledge about
what exactly happened to the quantum state during the experiment, as even if we know all
we can about the noise processes, they are still random in nature, and make our result more
random. By using correct noise models, we can calculate the time evolution of the density
matrix, and compare our theory or simulations with the experimental results, taking the noise
into account.

IV GPU Acceleration

The time-dependent solver handling the time evolution of the initial wave function is written
as a CUDA kernel running on a GPU (see Appendix). This GPU acceleration is desirable
here, as the process is very calculation intensive, but can be easily parallelised. This is exactly
what GPUs are designed to do optimally. A CPU is architecturally composed of a couple
of cores, typically 2-8 for modern processors. GPUs on the other hand have hundreds or
thousands of cores, allowing them to process thousands of software threads. The GTX 1080
Ti GPU, 7 of which were used in majority of calculations in this work, have 3584 cores each.
The difference in ability to process parallel threads is clear and staggering. The staggered
leapfrog algorithm can be parallelised as follows. Looking at Eqs. 2.28, 2.29, each time step
must be calculated sequentially, i.e. one entire time step must be finished before proceeding
to calculate the next one. Thus this process cannot be parallelised. However, each spatial
node for a given time step can be calculated in parallel, as they are independent. This is
where the GPU acceleration becomes invaluable.
Another factor to consider for numerical simulations is data precision. Real numbers are
stored as floating point numbers in the computer. Floating point numbers use formulaic
representation of real numbers as an approximation to support a trade-off between range and
precision. A number is represented to some fixed number of significant digits. Most used data
types are single precision ( f loat in C++) and double precision (double in C++) floating point
numbers. A f loat uses 4 bytes of data for 7 significant figures, and a double uses 8 bytes
for 16 significant figure. Using a double has an increased memory and computation time
cost compared to f loat. Additionally, Nvidia GPUs used in this work are better optimised
for using f loats. Since the estimated error in the initial wave function, and the oscillating
normalisation error in the time-dependent solver are both greater than f loat precision, and
for the reasons mentioned above, we have decided to use f loats throughout the simulations.



Chapter 3

Single qubit control

I Solid-state quantum dots as qubits

The aim of this work is to find an optimal definition of a semiconductor DQD charge qubit,
and find an experimentally realistic way of controlling it by applying a voltage bias across the
DQD. We wish for this method to be simple to understand and implement, as well as to be able
to correct for rise time τ of the experimental setup. While the semiconductor DQD charge
qubit is not the most promising qubit implementation, observations on how experimentalists
tend to control this system has served as an inspiration for this work. However, the results
and conclusions are applicable to a wide variety of qubit implementations.

In this work, we demonstrate that in a realistic semiconductor DQD structure, controlled
by voltage bias gate pulses, a reliable qubit can be defined and operated with high fidelity. We
first model a generic effective potential for a solid-state DQD system to define the qubit basis
states as bonding and anti-bonding states. We show how to initialise a single electron into
one of the logical qubit basis states and how to perform a set of mutually orthogonal rotations
on the Bloch sphere, thus an arbitrary rotation, using shaped pulses that correct for pulse rise
time. The impact of charge noise is considered, and the proposed control scheme’s resilience
is compared to a square wave pulse. We finally discuss our results and give conclusions on
the practicability of the scheme.

II Two-site localised state model

Let us begin with a review of the two-site localised state model that is commonly used to
describe the charge qubit. Within the two-state model, one has to solve the time dependent
Schrödinger equation with the effective Hamiltonian Ĥeff defined as
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Ĥeff(t) =−1
2

ε(t)σx +
1
2

∆σz +
1
2
(EB +EAB). (3.1)

Here EB and EAB are the energies of the bonding and antibonding states of the DQD
system, i.e. the two lowest energy states, at ε = 0 whereas ∆ is the ’hybridisation energy’
between the two localised states. At zero detuning, the bonding state ψB(x) is symmetric,
while the antibonding state ψAB(x) is antisymmetric. Therefore, their equal superpositions
produce maximally localised left/right states:

ψ
L(x) =

1√
2
(ψB(x)+ψ

AB(x)), (3.2)

ψ
R(x) =

1√
2
(ψB(x)−ψ

AB(x)). (3.3)

The linear detuning breaks the left/right symmetry, however as it is expressed by the
Pauli σx matrix in the Hamiltonian, it doesn’t make the system leave the ψB(x)/ψAB(x)
two-state basis (if done adiabatically), resulting simply in a coordinate rotation of the Bloch
sphere. Therefore, we can still think in terms of the left/right localised wave functions even
at non-zero detuning, and varying ε is a viable way of performing single qubit rotations.
The two-site localised state model describes a DQD well. The effective potential in an
experimental DQD system can be found using density functional theory [166, 213] and will
be a complex function of all three spatial coordinates x,y,z. By careful design, the dynamics
in two of the directions y and z can be confined to the lowest energy subbands so that only the
potential in the x direction, VDQD(x, t) needs be considered. For example in a GaAs/AlGaAs
heterostructure, the z direction is the growth direction and modulation doping can be used
to create a triangular quantum well in that direction with subband energies two orders of
magnitude larger than either ε or ∆. In the y direction, parabolic confinement with energies
an order of magnitude larger than ε or ∆ can be produced either by etching [73], fabricating
a thin gate wrapping the conducting channel [106, 233] or using split-gates [230]. In order
to create a DQD potential in the x direction, gates [228, 84, 142, 157] or etching [235, 73]
can also be used.

The aim is to create a potential VDQD(x, t) that has two minima separated by a tunnel
barrier. A convenient potential that has this property and is defined by three parameters A, B
and σ is given by

VDQD(x) = Ax2 +Bexp
(
−x2

2σ2

)
(3.4)
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This form for VDQD allows us to control both the depth of the dots and the barrier between
them directly, by varying the harmonic confinement A, barrier height B, and barrier width σ .
This potential will obey the two-site localised state model. For a specific set of parameters,
this static potential will define a value for ∆ which is the energy difference between the
bonding ground state EB and the antibonding first excited state EAB. Detuning is introduced
by adding a linear Stark shift of the form

Vlinear(x) =Vbias
x

2w
. (3.5)

Here, w is half the width of the DQD. By comparing the dependences of EB and EAB on
Vbias with the expected dependences from two-site Hamiltonian we can define the detuning
parameter for VDQD through a linear relation ε = eλVbias with λ being constant. We find this
linear relationship holds with an accuracy of one part in 106 across the range of required
values of ε for single-qubit operations. The total potential is Vtot(x) =VDQD(x)+Vlinear(x)
and Fig. 3.13a shows this potential at three different detunings.

The DQD dynamics under time-dependent detuning will be given by the TDSE

Ĥ(x, t)ψ(x, t) = ih̄
∂

∂ t
ψ(x, t) (3.6)

with

Ĥ(x, t) =− h̄2

2m∗
∂ 2

∂x2 +VDQD(x)+Vbias(t)
x

2w
. (3.7)

Time dependence is included in Eq. 3.6 by varying the potential slope with time: Vbias(t).
An example plot of the energies of the two lowest instantaneous solutions (the bonding and
antibonding states) as function of Vbias is shown in Fig. 3.13b.

Analytic solutions to the TDSE in Eq. 3.7 can only be found in special cases. In this paper
we solve Eq. 3.6 numerically using a GPU-accelerated version of the staggered-leapfrog
method.

Throughout the paper we avoid using specific numerical values to keep our results general
and not tied to a specific experiment. However, here we give the actual values used for
reproducability. We’ve used a total DQD length of 460 nm, with parameter values: w = 230
nm, A = 1.276 meV nm−1, B = 4.08 meV so that ∆ = 11.7µeV, and the linear coefficient
λ = 0.421. The values given are experimentally realistic [228, 80, 81]. We have also tested
various non-symmetric potentials with the two dots having different sizes, but in all the cases
the general conclusions were the same as for the symmetric potential of Eq. 3.4.
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III Single-Electron Charge Qubit definition

It is generally assumed either for simplicity or ease of experimental manipulations that the
logic basis-state wave functions of a DQD, |0⟩ and |1⟩, are fully localised in the left or right
side of the DQD [102, 93, 56]. This assumption is convenient for “brute force” initialisation
via applying a high bias voltage. The readout is realised by measuring the probability of
the electron being in the left or right dot (this is a source of error in itself, as there is some
ambiguity in the readout owing to the state overlap - this is discussed separately). However,
in a realistic DQD potential, these quantum states necessarily contain contributions from
higher energy eigenstates which give rise to additional composite oscillations, typically on
timescales faster than the qubit oscillation itself [119]. They ultimately induce a loss of
fidelity in gate operations. This issue is critical for practical implementations of quantum
computation and schemes like bang-bang pulse sequences (that switch abruptly) have been
proposed in order to mitigate this effect [232, 24]. Such sequences involve additional gate
operations that could be detrimental to the overall operation time. Consequently, optimizing
the qubit basis states is a necessary preliminary requirement before any other attempts at
extending coherence or improving the gate fidelity.

If a linear combination of the two lowest eigenstates of the DQD system is used instead of
assuming a fully localized state, a true two-level system is formed. A qubit control framework
that doesn’t involve energy states outside of the computational space would greatly improve
the fidelity compared to the method above.

It is optimal to define the qubit states as equal combinations of the ground and first
excited states at zero bias, because it produces well-localized qubits that can be measured
by detecting charge localisation, while also preserving symmetry between the two logical
states. This is demonstrated within the two-site localised state model [162]. A zero-bias
potential also makes the qubit first-order insensitive to electrical noise, improving fidelity
[122]. Moreover, as described in section IV, having zero detuning as a default achieves a
high fidelity R⃗x rotation without any pulsing. The coefficients of the energy eigenstates must
be equal in order to have symmetry between the qubit states. Therefore, for a given DQD
potential VDQD(x), we define the logical states, which correspond to the psiL(x) and psiR(x)
localised states described before, as:

|0⟩= ψB(x)+ψAB(x)√
2

,

|1⟩= ψB(x)−ψAB(x)√
2

,

(3.8)
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Fig. 3.1 Wave function of the two first excited states. The logical |0⟩ and |1⟩ qubits are formed
using Eq. 3.8. The values of the DQD spacing and the electrostatic potential amplitude were
chosen for illustrative purposes and the scheme presented here works for a wide range of
configurations.

where ψ (A)B(x) is the (anti)bonding state wave function.
While these states are not completely localized on a single dot, as their probability density

is tailing to the other side of the dot (Fig. 3.1), they maximize the average probability of
successful readout [162]. Further localization of the states would introduce higher-energy
states that would consequently not obey the ideal two-site Hamiltonian we aim to model
(Eq. 3.10). This can be understood by imagining that if there was no overlap between the
states, the inter-dot barrier would have to be so high that the left and right sides would be
effectively separated, thus disabling the interaction needed for controlling the qubit. Some
overlap, which will result is readout errors, is therefore unavoidable. However, by tuning the
barrier height, we can find a balance between the speed of operations, proportional to the
energy gap ∆, and readout errors. We show in Sec. VII that for our choice of parameters, these
errors are not significant. Since there is no reference to the underlying effective potential of
the DQD in our definition, this qubit is well defined for potentials that are not symmetric and
more generally, for any dot shape.
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IV Single Qubit Control

In the energy eigenbasis, the Hamiltonian of the qubit system reads:

Ĥ(t) =−1
2

ε(t)σx +
1
2

∆σz +
1
2
(EB +EAB). (3.9)

Here EB and EAB are the energies of the bonding and antibonding states, i.e. the two
lowest energy states, at a linear detuning ε = 0 , ∆ is the “hybridisation energy” between the
two localised states, and σx/z are the Pauli x/z matrices.

Using the basis defined in Eq. 3.8, where |0⟩ and |1⟩ are on the poles of a Bloch sphere,
the Hamiltonian in Eq. 3.9 is written as:

Ĥeff(t) =−1
2

ε(t)σz +
1
2

∆σx. (3.10)

We have neglected the constant factor here. The time-dependent wave function can then be
written in terms of the standard θ and φ , polar and azimuthal angles respectively, on the
Bloch sphere:

ψ(x, t) = cos
(

θ(t)
2

)
|0⟩+ eiφ(t) sin

(
θ(t)

2

)
|1⟩ . (3.11)

With no bias voltage, ε = 0, the wave function will undergo a constant rotation around
the z-axis on the Bloch sphere. When applying a non-zero bias, the axis of rotation is shifted.

For the Hamiltonian in Eq. 3.10, a general rotation on the Bloch sphere by an angle α

around a direction n⃗ is given by the solution to the time-dependent Schrödinger equation
(TDSE):

R⃗n(α(t)) = T exp
(

1
ih̄

∫ t

0
Ĥeff(t ′)dt ′

)
(3.12)

where T is the time-ordering operator.
Rotations are performed by sending a bias voltage pulse of amplitude Vbias =

ε

eλ
and

duration tp to the double dot where ε and λ are respectively the detuning and voltage
amplitude proportionality constant for a given potential. An instantaneous switch between
the Vbias = 0 and Vbias =

ε

eλ
bias states is generally preferred as this simplifies the dynamics

and avoids spurious qubit rotations [130]. In this case, the detuning ε(t) is described as
a set of step-functions and R⃗n(α) is expressed analytically as a rotation of the qubit state
around the axis on the Bloch sphere which passes through the eigenstates of H(t ′) at a rate
proportional to the difference in energy of these two eigenstates. Such a pulse requires a
linear potential along the axis of the double dot, as in Eq. 3.9, which is achieved by applying
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voltages to a set of metallic surface gates. During a square-wave pulse of detuning ε , the
system will evolve according to the Hamiltonian in Eq. 3.10, that will be constant during the
on-time of the pulse, giving an unitary time evolution (rotation):

U(t) = R⃗n(α(t)) = exp
(
−i

n⃗ · σ⃗
2h̄

t
)
, (3.13)

where n⃗ = (∆,0,ε) is the axis of rotation, with rotation frequency given by its magnitude.
Implementing such a square pulse isn’t technically possible owing to practical limitations.

Current and most commonly used pulse pattern generators have a built-in rise time τ of
about 40ps to 500ps depending on the brand and characteristics. The Keysight 81134A Pulse
Pattern Generator has a τ =60ps between 20% and 80% of target amplitude. The Agilent
81130A and the Anritsu MP1763C have τ = 500ps and ∼ 40ps respectively, both between
10% and 90% of target amplitude. (Fig. 3.2a). For a pulse to be considered square, the rise
time has to be negligible compared to the total pulse time, which would create very slow
operations with the rise time numbers given here.

In this case, the step-function decomposition is not possible and, in general, Eq. 3.12 must
be solved numerically. If the detuning can be described in terms of linear ramp functions, then
Eq. 3.12 can be written analytically as a Landau-Zener-Stuckelberg transition [135, 244, 215]
but the resulting expression becomes a function of parabolic cylinder functions which makes
understanding the rotation R⃗n(α) more complex [199, 94].

In order to investigate the consequences that follow from this technical limitation, we
have solved Eq. 3.12 numerically for a pulse with finite τ using a GPU-accelerated version
of the staggered-leapfrog method [15, 165, 140, 14, 217], as described in Ch. 2.

For such a pulse, the path of an individual qubit state on the Bloch sphere during the time
evolution in Eq. 3.12 differs from the one induced by a square pulse [75] (Fig. 3.3). In order
to implement a high-fidelity rotation on the Bloch sphere, an effective R⃗n(α) is found by
accounting for the aforementioned equipment limitations, such that the path traced on the
Bloch sphere is different, but the resulting rotation remains the same as one induced by a
perfect square pulse. We find that this can always be done by tuning the pulse duration and
amplitude, depending on τ and desired angle of rotation. The details of this correction are
outlined in IV.IV. One can question whether such an adjusted operation including transient
rotations is a proper rotation, i.e. independent of the initial state. The answer is yes, because
while the precise path on the Bloch sphere may be difficult to describe analytically, the
instantaneous Hamiltonian is still always expressed in terms of σx and σz matrices, therefore
the effective operation is composed of rotations and is itself an actual rotation. We show that
our pulses have the desired effect on any input state in Sec. VIII. Additionally, it is worth
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noting that having a finite τ can have a desirable effect on the qubit, as it makes the pulsing
operation more adiabatic compared to using square pulses.

IV.I General rotation scheme

To perform an arbitrary qubit rotation, we propose a scheme of concatenating square pulses
of alternating amplitudes. We set the bias voltage to produce a detuning ε =±∆ , which gives
the axes of rotation during pulsing to be in directions ( 1√

2
,0,± 1√

2
) on the Bloch sphere. We

will call these axes z⃗′ ( 1√
2
,0, 1√

2
) and x⃗′ ( 1√

2
,0,− 1√

2
) respectively, as they are both rotated

by π

4 around y⃗ w.r.t. the usual z⃗, x⃗ axis of the Bloch sphere. An arbitrary rotation can be
performed by combining up to five rotations around any two perpendicular axes, simply by
aligning x⃗′ with the desired axis of rotation n⃗, performing the rotation, and then reversing
the first step. An arbitrary rotation by angle α can thus be performed around axis n⃗ in the
following way:

R⃗n(α) =R⃗x′
(

π

2
−φ

)
R⃗z′(θ)R⃗x′(α)

· R⃗z′(−θ)R⃗x′
[
−
(

π

2
−φ

)]
,

(3.14)

where θ ,φ are the angles of R⃗y(
π

4 )⃗n on the Bloch sphere. The argument angles of the
composite rotations correspond to durations of the composite pulses, with 2π corresponding
to Trot =

2π h̄√
∆2+ε2 , the period of a full rotation around x⃗′ or z⃗′ while bias voltage is on. Since

the rotation around x⃗′ or z⃗′ is always in the positive direction, any negative angles have to be
replaced by a positive complement of 2π .

We present some examples of how such rotations are performed in Fig. 3.4. Here we
show Rz, Rx and Ry rotations, all by π

2 , performed with no rise time with great fidelity (>99.99
%). The 5-pulse control sequence as per Eq. 3.14 was used.

This method is simple to implement, but not optimal in operation time - as can be seen
in Fig. 3.4, the paths taken on Bloch sphere are far from optimal, wasting a lot of precious
operation time. It is known [121] that three rotations are sufficient, resulting in a faster
operation:

R⃗n(α) = eiβ R⃗x′(Θ1)R⃗z′(Θ2)R⃗x′(Θ3). (3.15)

Here, Θ1, Θ2 and Θ3 each depend on the angle and axis of the rotation. The above
scheme was suggested by Echo Kexin Zhang, and proven and implemented by myself.
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Fig. 3.2 (a) Amplitude profile of the ideal square pulse (solid blue line) to apply the linear
bias given by Eq. 3.13. The pulse amplitude and duration are adjusted when τ is finite. (b)
Multiplicative amplitude adjustment factor ξ given a target rotation angle θ . Each coloured
line corresponds to a different τ (see legend). (c) Additive pulse duration adjustment ∆T
with respect to the original square pulse time (see panel (a)). The rise times are not included
in the additional pulse duration. Each coloured line corresponds to a different τ (see legend)
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Fig. 3.3 Example pulse sequences and associated qubit rotations. Top: rotation path on the
Bloch sphere. Bottom: Optimized pulse sequence where Tx =

2π h̄
∆

. To remain general, values
of time and voltage are quoted as fractions of Tx and ∆

eλ
respectively. Exact experimental

values will vary from one setup to the other. See the discussion for more details. All pulse
sequences lead to a final state with a fidelity of >99.99%. Furthermore, the same pulse
sequence can be used for any initial state on the Bloch sphere without significant loss in
fidelity.

Fig. 3.4 Examples of 5-pulse sequences Top: rotation path on the Bloch sphere. Bottom:
Optimized pulse sequence where Tx =

2π h̄
∆

. To remain general, values of time and voltage
are quoted as fractions of Tx and ∆

eλ
respectively.
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IV.II State preparation

Before any quantum computation is performed, each qubit has to be initialized to a fiducial
state, usually |0⟩ or |1⟩. For a generic operation involving a charge qubit, before any
initialisation pulsing, we would expect the initial state of the electron to be the ground state
of the DQD (see Fig. 3.1). Such a state is not part of the qubit’s logical basis and an initial
rotation is needed. In order to rotate the wave function from the ground energy eigenstate
to the qubit |0⟩ state, we can take advantage of knowing the initial state to simplify the
operation. A R⃗z′ (π) rotation will initialise to the |0⟩ state, while a R⃗x′ (π) will do so to the
|1⟩ state. Both are achieved with a single pulse, thus simplifying the initial state preparation.

IV.III Single axis rotations

Any single-qubit operation can be expressed in terms of rotations around two perpendicular
axes. Here we provide the control sequence for rotations around the usual x⃗, y⃗,⃗z Bloch sphere
axes from an arbitrary point on the Bloch sphere.

The R⃗y rotation consists of only 3 pulses owing to angle cancellation in Eq. 3.14 (as
φ = π

2 ):

R⃗y(α) = R⃗z′
(

π

2

)
R⃗x′ (α) R⃗z′

(
3π

2

)
. (3.16)

To rotate in the opposite direction, one simply has to invert this pulse (swap x⃗′ and z⃗′) to
get:

R⃗y(−α) = R⃗x′
(

π

2

)
R⃗z′ (α) R⃗x′

(
3π

2

)
. (3.17)

Rz and Rx rotations would require five pulses if done as per Eq. 3.14. Instead, we solve
Eq. 3.15 for the angles to also perform them with just three pulses. Owing to symmetry, the
first rotation is the same as the third one.

We find a fast and simple general rotation scheme based on creating two perpendicular
axes x⃗′ and z⃗′, by setting the detuning ε =±∆. Then we observe that one should be able to
perform a rotation around an axis at π

4 w.r.t the two axes above, which would be x⃗ and z⃗. This
is achieved by rotating by some angle Θ1 around the first axis, then by Θ2 around the second
one, and finally by Θ1 around the first one again.

We will find the relationship between Θ1, Θ2, and the net angle rotated around x⃗ or z⃗
named α , by analytically comparing the rotation matrix elements with the straightforward R⃗x

and R⃗z rotations.
Looking at R⃗x first:
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R⃗x(α) =

(
cos α

2 −isin α

2
−isin α

2 cos α

2

)
. (3.18)

In our scheme,

Rx⃗′(α) = R⃗y

(
−π

4

)
R⃗x(α)R⃗y

(
π

4

)
, (3.19)

Rz⃗′(α) = R⃗y

(
−π

4

)
R⃗z(α)R⃗y

(
π

4

)
, (3.20)

and we need the following to always hold:

R⃗x(α) = Rx⃗′(Θ1)Rz⃗′(Θ2)Rx⃗′(Θ1). (3.21)

Comparing the (1,1) matrix elements:

cosα = cos
Θ2

2
(2cos2 Θ1

2
−1)

− j
√

2(
1
2

sin
Θ2

2
+ cos

Θ1

2
cos

Θ2

2
sin

Θ1

2
).

(3.22)

Since the imaginary part on the LHS is zero, we have:

(
1
2

sin
Θ2

2
+ cos

Θ1

2
cos

Θ2

2
sin

Θ1

2
) = 0. (3.23)

Solving the above allows us to find Θ2 in terms of Θ1:

Θ2 = 2arctan(sinΘ1) . (3.24)

Now coming back to the real part of Eq. 3.22 and substituting for Θ2, we have:

cos(arctan(sinΘ1))cosΘ1 = cos
α

2
, (3.25)

which gives

Θ1 = arccos

 √
2cos α

2√
cos α

2
2 +1

 . (3.26)

The above satisfies Eq. 3.21 for all matrix elements, and is therefore equivalent. It allows
us to find a three pulse train that performs the R⃗x(α) rotation by an arbitrary angle α . We
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repeat the above procedure for R⃗z to find the following:

Θ2 =−2arctan(sinΘ1)+2π, (3.27)

Θ1 = arccos

 √
2cos α

2√
cos α

2
2 +1

 . (3.28)

Therefore, we can perform arbitrary rotations around z⃗ and x⃗ this way. However, this
scheme is unable to perform the R⃗y rotation, which is achieved as shown in Eq. 3.16.

To summarise, we optimally perform the x- and z-axis rotations as follows:

R⃗x/⃗z(α) = R⃗x′ (Θ1) R⃗z′ (Θ2) R⃗x′ (Θ1) , (3.29)

where

Θ1 = arccos

 √
2cos α

2√
cos(α

2 )
2 +1

 , (3.30)

and
Θ2 = 2arctan(sinΘ1) (3.31)

for R⃗x, and

Θ2 = 2(π − arctan(sinΘ1)) (3.32)

for R⃗z. Additionally, we note that −R⃗z(α) = R⃗z(−α), which allows us to shorten opera-
tion time for rotations with α ≥ π

2 by inverting the pulse profile to perform the complementary
rotation instead.

We note that one of the effects of defining the qubit as in Eq. 3.8 is that R⃗x rotation will
occur automatically due to the Hamiltonian, with the rotation period Tx =

2π h̄
∆

. In the many
qubit case, all the qubits rotate at their respective frequencies, and one would usually work in
the rotating basis, therefore an R⃗x rotation still needs to be performed as per Eq. 3.29.

Instead of using the usual x⃗, y⃗,⃗z basis, we can instead use the x⃗′, y⃗,⃗z′ (note the primes)
basis which is more natural for the detuned system, and can be used to define logic gates
with fewer pulses. A single R⃗y(

π

4 ) rotation is required to move into this basis. R⃗x′, R⃗z′ are
then achieved with a single pulse, while R⃗y requires three, as in Eq. 3.16. This way, any
computation can be performed in the rotated basis, where operations are quicker. At the
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end, one would need to rotate back to x⃗, y⃗,⃗z using a R⃗y(−π

4 ) rotation, for optimal readout of
localised states.

Some logic gate examples are:

X = R⃗z′(π), (3.33)

Y = R⃗y(π), (3.34)

Z = R⃗x′(π), (3.35)

H = R⃗y(
π

2
)Rx⃗′(π), (3.36)

Rφ = R⃗x′(φ). (3.37)

IV.IV Correcting for rise time

To account for the actual experimentally realisable pulses not being square due to rise time
and limited bandwidth, the bias voltage and pulse duration have to be adjusted. This adjust-
ment depends on the target rotation angle and τ , but not on the input state (if we design it
correctly). Therefore, it is sufficient to optimize a single pulse for the instrument rise time
and range of desired rotations - these single pulses can then be concatenated into three-pulse
trains to achieve arbitrary qubit rotations of high fidelity. Here we numerically find the correct
adjustments. This allows experimentalists to apply the ideal control sequence by simply
changing the amplitude and duration of each square pulse in the train, avoiding complicated
pulse shapes while retaining high fidelity. We assume that since applying an electrical bias
pulse to the DQD has the effect of a σz operator on the Hamiltonian, the resulting operation
should be a proper U(2) rotation, and therefore its’ effect is not dependent on the initial state
(when described as a rotation on the Bloch sphere around some axis by some angle). We
assume that by varying only the amplitude and duration of a pulse that is distorted from
square by a sinusoidal rise/fall time, we can adjust it to be equivalent to said square pulse, at
least within some restrictions on which rotations we are able to perform within this scheme.
For example, it is evident that very short rotations are not possible, since just during the
rise and fall time the state vector on the Bloch sphere will move by a significant amount.
However, such small rotations could still potentially be performed by extending the pulse
to last a whole rotation period Trot (which corresponds to a rotation by 2π) to start with, to
buffer out the rise time effects.

We use a gradient ascent method to find the required amplitude ξ and pulse duration
∆T adjustments. We start in an initial state |ψ⟩ = 1√

2
(|0⟩+ |1⟩) and then apply the pulse
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including rise time using an initial guess for ξ and ∆T . We then calculate its’ fidelity w.r.t.
the square pulse, and take small steps in the phase space of ξ , ∆T to calculate a derivative of
fidelity w.r.t these adjustment parameters. We continue to move in the direction of greatest
increase in fidelity, and with a step size that is proportional the magnitude of that derivative
and a scaling γ , until a very low error (at least 10−6) is reached (See Fig. 3.5 for an illustration
of this method) . There exists a fine balance between number of steps required, and maximum
fidelity reachable - decreasing γ increases the number of steps to reach a given fidelity, but
also increases the maximum fidelity reachable before diverging. We have tried strategies
of using adaptive γ , tuning it based on step number and fidelity reached with some success,
but ultimately some hand tuning and multiple runs were needed to reach very high levels of
fidelity here. Fig. 3.6 shows an example of this gradient ascent process for one value of θ

and τ . We sweep over the requested rotation angle for a few values of set rise times. We find
that as long as the required rotation angle is not smaller than a threshold value determined by
the rise time, it is always possible to find the adjusted pulse of high fidelity. We later show
that the fidelity remains sufficiently high independent of the initial state’s location on the
Bloch sphere.

We present the numerical results for required amplitude ξ and pulse duration ∆T adjust-
ments, depending on τ and angle of rotation α , all expressed in terms of the physical system
parameters. Here, ξ is a multiplicative factor adjusting the amplitude with respect to the
square pulse amplitude (ξ = 1), and ∆T is the additive time adjustment with respect to the
square pulse duration as well, as per Fig. 3.2 (a) - it is always greater than zero. We use
generalised rise times expressed in terms of a fraction of generalised time Tx (period of a
full rotation without any pulsing), as seen in the legend of Fig. 3.2. We have chosen these
values to correspond to minimum possible rotation angles of π

8 ,
π

6 ,
π

4 ,
π

3 ,
π

2 , from shortest to
longest. These are the minimum possible rotations, because they are given by a pulse that
consists only of rising/falling time, with no flat top, and is therefore the shortest pulse of
desired amplitude that is possible. Of course, it is still be possible to rotate by an arbitrarily
small angle indirectly by adding a 2π rotation. As can be seen in Fig. 3.2 (b,c) the required
time adjustment rises exponentially with desired rotation angle. Therefore, it is optimal to
compose any pulse of the smallest possible rotations, as this will result in shorter overall
rotation time. If the target rotation angle does not subdivide into an integer number of shortest
possible rotations, one needs to use somewhat longer sub-pulses appropriately. Assuming a
sine-shaped rise ramp, this short pulse is a sine wave, which is straightforward to generate
experimentally. Single qubit control can be achieved by sending sine waves, with frequency
as high as experimentally possible, and amplitude given by ξ in Fig. 3.2 (b). Note that the
only system-specific quantity is the energy gap ∆ - the signal frequency is independent of
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Fig. 3.5 Illustration of the principle of gradient ascent. Starting from some initial guess,
derivative of the function (fidelity in this case) is evaluated w.r.t. the parameters, and a step is
made in the direction of greatest difference. This ensures that we always move towards at
least a local maximum. Image from [1].
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Fig. 3.6 Finding the adjustment parameters for angle of rotation π

2 with τ = Trot
16 . We start at

point A with an initial guess of no adjustment, which gives a fidelity error of 0.0019, and
end at point B with fidelity error 10−5. Continuing with the same step size scaling γ will
eventually cause the search to diverge, therefore it should be reduced and the search iterated
again, starting with the best adjustment parameters that the previous search managed to find.
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the qubit system and not resonant with the two-level system, and instead purely defined
by experimental limitations of the equipment (τ > 0). We present examples of rotations
performed with this scheme in Fig. 3.3, which summarises our main results.

As the resulting fidelity varies significantly with even small deviations from the param-
eters found here, we find that trying to fit analytical expressions to the data is not very
useful if high fidelity is required. While ∆T as a function of rotation angle θ seems to be
an exponential, while ξ is a rotated S-curve, attempts to fit it results with unacceptably low
fidelity for a large θ range. Therefore, we suggest the gradient ascent search procedure
described here be performed for the system of interest, taking into account the specificity of
the experimental setup. This could be done using numerical simulations like in this work, or
directly by taking actual measurements in an experiment. However, the latter might not be
practical, as we find that thousands of fidelity evaluations are necessary to find good enough
adjustment parameter values. If significant measurement error is present, the required number
of experimental runs necessary might not be possible to realise, further highlighting the need
for numerical simulations. Pseudocode of the gradient ascent procedure is provided in App.
B - it should enable anyone to find the optimal parameters in a general case, for rise time and
angles that are required. While this code uses the GPU-accelerated software described in this
thesis, it is not strictly necessary, as a single-particle simulation is not heavily taxing on the
hardware. Instead, a variety of simpler simulation methods should be successful instead.

IV.V Noise

Noise is always an important source of loss of fidelity in any qubit platform. If unaccounted
for, the randomness of noise will lead to gradual loss of quantum information during a com-
putation. While noise mitigation is not the goal of this work, we nonetheless investigate its
impact here for completeness. In a quantum-dot-based charge qubit we base our simulations
on, charge noise is one of the main sources of noise. It arises from fluctuations of charge
states that lead to fluctuations of electric field a qubit experiences [133].
Here, we use a simple model where the charge noise is low-frequency and can be assumed
to be constant during a single quantum operation [41]. In practice, this could result from
some charge trapped temporarily on one side of the DQD, imparting an electric field gradient,
effectively adding an unwanted random bias voltage. Therefore, to calculate the resulting
fidelity loss, we average the resulting fidelity from many simulations, each with a random am-
plitude, but constant during a single simulation. The effective Hamiltonian has an additional
noise term:
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Ĥnoise(t) =−1
2
[ε(t)+δnoise]σx +

1
2

∆σz, (3.38)

where δnoise is the noise amplitude randomly drawn from a normal distribution with mean
µ = 0 and standard deviation σnoise, which can be varied to explore different noise strengths.

A large number (order of 100) of simulations are run with this randomised noise for some
example operations, and the effects of this noise are compared between a square wave, and
adjusted pulses accounting for rise time that are the result of this work. The random number
generator seed is the same for both cases, so that they experience exactly the same noise
and thus can be compared fairly. The results are presented in Fig.3.7. It can be seen that
using the adjusted pulse is effectively the same as a square one for noise resistance. This
is to be expected, as the pulse was not designed with noise in mind. At the very least, we
confirm that our proposed pulse is not any worse than an idealised square wave, and further
error mitigation techniques can be applied to it, as they would be to a square pulse, without it
causing any loss of fidelity, while the problems associated with rise time are solved.

Interestingly, we find that there is a subset of cases where an optimisation of our pulse
sequence does produce a reduction in noise-related errors. When performing an R⃗x rotation,
it is possible to sub-divide the pulse into further smaller sub-pulses that add up to the total
angle of rotation θ . This is only possible when the rise time constraint allows such a division,
as there will exist a minimum angle θmin that you cannot subdivide further. This can be
understood by looking at how angles Θ1,Θ2 as per Eq. 3.15 depend on required total angle of
rotation α - this information is presented in Fig. 3.8. For the R⃗z rotation however, this method
doesn’t work well, as the angle Θ2 is always relatively large, even for small total rotation
angle α . Therefore, attempting to subdivide a larger rotation would result in a very long
total operation time, as the total angle that needs to be rotated is no longer (approximately)
proportional to α . This data is presented in Fig. 3.9. Additionally, the dependence of total
rotated angle (which approximately corresponds to total operation time) on the required
rotation angle α is presented in Fig. 3.10 for both R⃗x and R⃗z rotations. The case for R⃗y

suffers from similar issues as R⃗z, therefore one cannot use this optimisation by subdivision to
improve resilience against noise there.

An example of noise reduction owing to subdivision into smaller pulses for an R⃗x rotation
is presented in Fig. 3.11.

This beneficial effect of subdividing the pulse can be understood by investigating the
pulse sequence that achieves the rotation. As seen in Fig. 3.12, which shows a pulse shape of
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Fig. 3.7 Impact of noise on fidelity is investigated for two example operations, comparing
an idealised square wave to adjusted pulses for two examples of rise time τ . Noise strength
(standard deviation) is expressed in units of reference pulse strength σnoise =
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Fig. 3.8 Θ1,Θ2,α angles co-dependence for R⃗x. For small α , both Θ1,Θ2 are relatively
small, enabling one to subdivide a larger rotation into a series of smaller ones, provided rise
time τ is small enough that all these angles can be realised.

Fig. 3.9 Θ1,Θ2,α angles co-dependence for R⃗z. Even for a small α , Θ2 is large, which
prevents one from subdividing a larger rotation into a series of smaller ones, as it would
drastically increase the total rotation time, and thus time over which noise affects the
operation.
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Fig. 3.10 Total rotation angle dependence on α for R⃗z and R⃗z. While the total rotation angle is
approximately proportional to α for R⃗x , is already starts at 2π for R⃗z, making the subdivision
into smaller pulses not practical.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Fig. 3.11 Up to 250 % gain in fidelity is observed when performing an Rx rotation by θ = 3
2π .
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Fig. 3.12 A gain in fidelity is observed when performing an Rx rotation by θ = 3
2π . The

resulting pulse shape oscillates from negative to positive multiple times, effectively canceling
out some of the noise. Noise strength is expressed in units of reference pulse strength
σnoise =

∆

eλ
, and varied from 0.01 ∆

eλ
to 0.2 ∆

eλ
.

a noise-reducing sequence, the oscillating nature of the pulse takes it from being negative to
positive frequently. This will average out the influence of noise to a significant degree, while
keeping the total operation time close to the one for an ideal square wave.

Overall, we conclude that the control techniques presented here are at least as good in
resisting noise as using a square wave, and can improve upon it under certain conditions.
Therefore, they are suitable to replace the square wave, and to have further noise-reducing
methods applied upon them, while they offset any errors due to rise time. The optimised R⃗x

rotation is able to mitigate charge noise up to almost threefold in the fidelity error (this gain
increases with noise strength), given that rise time τ enables one to perform multiple smaller
rotations that add up to a required total angle.
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V Discussion

When experimentally optimising qubit rotations, voltage pulses are usually considered as
square while rise and fall times from instrument limitations and other filtering effects due to
the finite bandwidth of coaxial cables are neglected. While the voltage is gradually rising to
some intended amplitude, the qubit will undergo transient rotations, and will not reach the
expected position on the Bloch sphere. These errors accumulate over long operations, leading
to poor fidelity. Moreover, applying very sharp pulses of high amplitude, with the intent of
performing an Rz rotation, can lead to unwanted energy excitations due to non-adiabacity,
causing further fidelity loss [135, 244, 215]. The control scheme presented here overcomes
both problems by explicitly adjusting the pulses for rise time, and by using relatively low
pulse amplitudes, making the operations adiabatic. By using a specific amplitude giving us
two perpendicular rotation axes, we achieve single-qubit control without the need for strong
non-adiabatic pulses, or the requirement for perfectly square ones. The disadvantage of this
scheme is operation time. As the pulse amplitude is tied to the energy gap between the first
two eigenstates of the DQD, there is little control of the rotation speed, at least in the case
of a semiconductor DQD system. However, careful engineering of the DQD allows for the
operation time to be tailored or optimized [140]. As long as the system energies can be tuned
so that the operation time is much less than qubit coherence time, the benefits of increased
operation fidelity will outweigh the cost of increased duration.

In this work, we simulate a semiconductor GaAs-based DQD using finite difference
methods. The parameters for our simulations were chosen to be experimentally realistic in
terms of energy, time scales and pulse generation. We kept these values general since specific
rise/fall times and inter-dot energies will depend on each experimental implementation.
Current systems are capable of generating pulses with τ = 40ps-500ps. Experimental work
by Fujisawa et al. [102, 80] contain gate pulses with τ ∼ 100ps, with total pulse time of
600ps and Vbias = 40µeV. More recent work achieves at least 40ps pulse resolution with
advanced techniques [152].

The groups cited above as well as other semiconductor-based quantum dot research
[220, 173] could practically eliminate errors due to rise time and pulse-induced excitations
outside of the computational space by using our proposed pulse sequences.

While the semiconductor charge qubit system was used in simulations in this work, our
results are easily generalisable to other types of qubits, as long as the Hamiltonian is of a
similar form to Eq. 3.9. For example, the same scheme can be used to control a spin qubit by
varying the magnetic field B instead of a voltage bias. In this particular case, it is easier to
adjust the energy splitting ∆ = 1

2γB by applying a strong reference magnetic field. Increasing
∆ will result in faster operation. However, in the charge qubit case, it is achieved by lowering
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the DQD barrier. This will increase the overlap between eigenstates, decreasing localization
and thus readout fidelity. No such issue arises for the spin qubit, overcoming the slower
operation time of our framework. Our results can then be directly translated to the spin qubit
case, by applying a magnetic field B′ in some perpendicular direction to B.

VI Conclusions

We have described quantum control of the optimal charge qubits for a double-quantum dot
system. We presented pulse sequences for state preparation and arbitrary qubit rotations, and
show how to account for the experimental control suffering from finite rise/fall times. Owing
to hybridization of the eigenstates in a double-dot system, the spatial wave function of the
two lowest energy eigenstates cannot be confined exclusively to the left and the right dot.
The optimal qubit was found to be defined in terms of the two lowest energy eigenstates of a
zero-bias system. This allowed us to reduce our model to a two-state system.

We show that it is possible to prepare the qubit in such a state when it is initially in the
ground state of a DQD. Combining theory and numerical techniques yields an optimal pulse
sequence that accomplishes arbitrary single-qubit rotation even with non-zero rise time τ .
We demonstrate how our framework results in high fidelity despite τ > 0, while avoiding
unwanted excitation to higher energy states. Indeed, we show that square pulses are not
only unnecessary, but also undesirable, as the sharp rise can induce unwanted oscillations,
while being simple to account for. Since our proposed pulse sequence reduces to sine waves
to minimize total pulse duration, it is straightforward to implement experimentally. As our
numerical fitting parameters depend only on the energy splitting ∆, the results are easily
scalable to any particular system. Our scheme is easily generalizable to other qubit systems
with similar Hamiltonians, such as spin qubits. Applying our results will lead to increased
operation fidelity in many systems, making them viable for practical quantum computing
applications.

We also investigate the impact of charge noise on the control proposed protocol, and
conclude that using at the very least keeps noise-related error not larger than they would
be for a square pulse. In the case of R⃗x rotation for certain angles, we find that the noise is
actually significantly mitigated by the oscillating waveform, which leads to improvements in
fidelity. Overall, we conclude that our protocol is a candidate for further error correction that
could be applied to a square wave, but can provide some enhancement on its own.

Our method of accounting for rise/fall times bears resemblance to the GRAPE ( Gradient
Ascent Pulse Engineering) algorithm [190], however there are important differences. Our
method specifically works to cancel the rise/fall times of assumed profile (sinusoidal in
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this work, but the method can be used for any shape), resulting in a simple lookup of two
parameters ξ and ∆T depending on required angle of rotation and τ itself. GRAPE instead is
a more general “black box” technique that tries to optimise a pulse sequence by constructing
it from slices of piecewise constant amplitudes, by tuning these amplitudes via gradient ascent
methods. We find that the method used here is simpler to implement for experimentalists,
and outputs a waveform composed of sinusoids, which can be described analytically, and is
by design not limited by the device rise/fall time.

VII Readout

For completeness, we discuss a potential procedure for the readout process. In experimental
setups, it is the probability of finding the electron in one of the dots which is measured rather
than the qubit superposition weighting coefficients. We can express both qubits defined in
Sec. III in terms of their right and left dots parts:

ψ0(x) = ⟨x|0⟩= f0L(x)+ f0R(x) (3.39)

ψ1(x) = ⟨x|1⟩= f1L(x)+ f1R(x) (3.40)

Because the qubits |0⟩ and |1⟩ are orthogonal, we have:

0 =
∫

ψ
∗
0 (x)ψ1(x)dx =

∫
f ∗0L(x) f1L(x)dx+∫

f ∗0L(x) f1R(x)dx+
∫

f ∗0R(x) f1L(x)dx+∫
f ∗0R(x) f1R(x)dx =

∫
f ∗0L(x) f1L(x)dx+∫
f ∗0R(x) f1R(x)dx.

(3.41)

The qubits are mirror images of each other, such that ⟨x|0⟩ has the same spatial distribution
in the left (right) dot as ⟨x|1⟩ has in the right (left) one. We also know that there is some
non-zero overlap, unless the DQD barrier is completely separating the dots. Therefore
Eq. 3.41 implies that : ∫

f ∗0R(x) f1R(x)dx =−
∫

f ∗0L(x) f1L(x)dx = η . (3.42)
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Any arbitrary state can be written as a linear combination of the two qubits right and left
dot components

ψ(x) = αψ0(x)+βψ1(x) =

α

(
f0L(x)+ f0R(x)

)
+β

(
f1L(x)+ f1R(x)

)
,

(3.43)

The probability PR of finding the particle in the right dot is then:

PR =
∫

∞

0
ψ

∗(x)ψ(x)dx =
∫

∞

0

(
α
∗ f ∗0R(x)+

β
∗ f ∗1R(x)

)(
α f0R(x)+β f1R(x)

)
dx.

(3.44)

Using Eq. 3.42, this reduces to:

PR = |α|2
∫

∞

0
f ∗0R(x) f0R(x)dx+

|β |2
∫

∞

0
f ∗1R(x) f1R(x)dx+η(α∗

β +αβ
∗) =

|α|2P0R + |β |2P1R +2ηR(α∗
β ),

(3.45)

where the integrals P0R and P1R can be obtained initialising the qubit in the ψ0(x) or ψ1(x)
state, respectively, and measuring the probability of finding it in the right dot. Combining
Eq. 3.45 with the normalisation condition for ψ(x), we obtain an equation relating |β | to the
probability PR of finding the particle in the right dot, up to an error term proportional to η ,
which quantifies the uncertainty of determining whether the qubit is in the left or right side
of the DQD:

|β |2 = PR −P0R

P1R −P0R
+δ . (3.46)

A similar expression exists for |α|2, with PL being the probability of finding the particle in
the left dot :

|α|2 = PL −P0R

P1R −P0R
−δ , (3.47)
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where δ = 2η
R(α∗β )
P0R−P1R

is the effective error. Since P1R ≈ 1, P0R ≈ 0, we can estimate the
maximum readout error, which would occur for a maximally entangled state:

| δ |/ η . (3.48)

For the parameters used in this paper, | δ |≤ 8 ·10−4. This magnitude of readout error is not
very significant compared to other sources of errors in a quantum computation [141, 111],
such as two-qubit gates, relaxation, or dephasing, especially since it’s only applied once
as the final step. Additionally, it was shown [140] that in a similar situation, adiabatically
increasing the inter-dot barrier of the DQD preserves coherence, while greatly reducing this
type of’ “overlap” error -this technique should be used when possible if the readout error
is noticable. Alternatively, as this error is a result of lack of knowledge of R(α∗β ), a full
state tomography could be performed to eliminate it completely (assuming that errors of
operations associated with the tomography do not outweigh the readout error). Therefore,
we conclude that measurement of the charge distribution is a viable way of reading out the
qubit in our scheme, as it is not a significant source of error compared to others, provided
that the experimental fidelity is not a limiting factor.

VIII Fidelity as a function of initial state

Error is found by calculating the fidelity - overlap between the target state and the iterated
state. Although some variation in fidelity is dependent on the initial state of the electron,
any errors are below 10−4, and as low as 10−8 for some initial positions. This error could
be reduced further if necessary by fine-tuning the adjustment parameters ξ ,∆T . Figures
3.14, 3.15, and 3.16 show a fidelity map for the Rx, Ry and Rz rotations respectively, as a
function of Bloch sphere angles θ ,φ . A rotation angle of π was chosen in each case, but the
results are similar for all angles. Each plot corresponds to 500 simulations of the rotation
starting from different initial states equally distributed over the Bloch sphere (with equal
sphere surface area for each point) .
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Fig. 3.13 (a) The DQD potential Vtot at zero (blue), lowest (red) and highest (orange) detuning
values. (b) Energies E of the bonding (EB) and anti-bonding (EAB) eigenstates. The coloured
dots mark potential shapes from part (a).

Fig. 3.14 Error in fidelity for an Rx(π) rotation, as a function of initial position on the Bloch
sphere. The variation in fidelity is relatively small, and the error is expected to approach 0 as
parameters are tuned to an ideal value.
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Fig. 3.15 Error in fidelity for an Ry(π) rotation, as a function of initial position on the Bloch
sphere. The variation in fidelity is relatively small, and the error is expected to approach 0 as
parameters are tuned to an ideal value.

Fig. 3.16 Error in fidelity for an Rz(π) rotation, as a function of initial position on the Bloch
sphere. The variation in fidelity is relatively small, and the error is expected to approach 0 as
parameters are tuned to an ideal value.



Chapter 4

Root-of-SWAP operation with single
electron qubits

I Introduction

The development of a universal semiconductor quantum computer hinges on the ability
to entangle qubits. One promising method is to use the exchange interaction between
electron-spins. This concept was first introduced by Loss et al., for static qubits [146, 32],
and Barnes et al., for dynamic, also called flying, qubits carried by surface acoustic waves
(SAWs) [19]. The use of flying qubits trapped in SAWs is a particularly favorable platform
for quantum computation for two reasons. First, the dynamic nature of the qubits enables
on-chip operations to be controlled by static electric and magnetic fields from surface gates
and magnetic microstructures [83, 159]. Not having to vary surface gate potentials reduces
associated errors. Second, the confinement caused by the SAW potential prevents spatial
dispersion of the fermionic wave packets [14]. The framework is especially promising for
building a universal quantum transducer—a bus that transports entangled qubits between
spatially separated parts of a quantum computer that could itself be implemented in a different
technology [196, 192].

There are some limitations associated with this architecture - the downside of embedding
the computation in the layout of the device means that for arbitrarily long computation, the
electrons would have to be reflected back at some point, as they move at the speed of sound
through a device, and every gate would take up some finite lengths. Dynamic pulsing is also
required to initialise the electrons. However, these potential drawbacks are not fundamental,
and not necessary even relevant, depending on the use scenario (for example, a quantum
transducer does not have to perform long computations).
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The last decade has seen significant developments in the achievement of SAW tech-
nologies [53, 155]. Advances include the reliable control of single-electron transport
[158, 105, 76, 63] and the increase in electron-qubit coherence times [214, 193, 137, 173].
The SAW framework for manipulating electron-spin qubits has shown promise for realizing
optics-like quantum processes with readily interacting particles. Experimentally, single-qubit
operations [63], beam-splitters [186, 217] and spin-polarization readout devices [131] have
been realized in GaAs heterostructures, and a spin-qubit toolkit for the implementation of
generalized measurements has been presented [14].

Previous works on flying electron systems have been restricted to either single particle
scenarios [34, 25], or analytical models with a limited number of sites [32, 19] and simplified
simulations in 1D for two particles[165, 86].

In the latter case, it was suggested that entanglement generation could be achieved using
a single-shot root-of-SWAP operation in which two electrons collide in a harmonic potential.
Attempts to simulate realistic devices in layered 3D systems have faced problems owing to the
space- and time-domain scaling associated with solutions to the many-particle time-dependent
Schrödinger equation (TDSE). However, recent advances in graphics-processing-unit (GPU)
performance [8, 191] have made previously demanding problems readily solvable. It is now
possible to perform fine-grained two-particle 2D simulations of such systems with realistic
device potentials.

In this work, we utilize our state-of-the-art GPU hardware to run a customized
staggered-leapfrog algorithm [89, 15, 153], as described in Ch. 2. In particular, we study
SAW-based flying qubits, interacting via the Coulomb interaction in a 2D double-dot po-
tential. Our results demonstrate the experimental viability of entanglement generation via
root-of-SWAP operations. Furthermore, we show that the single-shot method [165] is not
experimentally feasible. Not only are our simulations useful to gain insight into quantum
logic operations, they also shed new light on simpler analytical models. Specifically, we com-
pare our simulation results to two commonly used two-site models: the Hubbard approach
[19], and the Hund-Mulliken method for molecular orbitals [32]. We establish the limits and
applicability of these models. We use experimentally realistic parameters for the interaction
duration, the device potential, and geometry.

Moreover, the method we present is easily tunable to achieve not only the Root-of-SWAP
operation, but a more general Power-of-SWAP. The matrix representation of the more general
Power-of-SWAP operation in the two-qubit basis |00⟩ , |01⟩ , |10⟩ , |11⟩ is:
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SWAPn =


1 0 0 0
0 1

2(1+ eiπn) 1
2(1− eiπn) 0

0 1
2(1− eiπn) 1

2(1+ eiπn) 0
0 0 0 1

 . (4.1)

For Root-of-SWAP, n = 1
2 . This power n is essentially a continuous parameter that we

can control in the experiment.
To ensure parameter realism, we calculate the potential profile of the heterostructure with

voltages applied to the metallic gates. We use a Poisson-Schrödinger self-consisted solver to
calculate the range of values that are possible with current semiconductor technologies [217].
Since this work demonstrates a proof-of-concept for the SAW-driven entangling operation,
we use analytical equations to reproduce the potentials calculated by our solver. In doing
so, we avoid simulating a specific device implementation and ensure that these simulations
are reproducible and adaptable to different experimental needs. Our work is a vital step
towards constructing the fundamental building blocks of a SAW-based quantum computer.
The simulations we present are based on the GaAs/AlGaAs SAW-based heterostructure but
our methodology, results, and conclusions are applicable to other semiconductor quantum
systems, including static quantum dots.

II Device Description

Let us begin with a description of the device structure and the electron dynamics that allow
us to model an entangling operation between two spin-qubits. The physical spin-qubits
are electrons, and their spatial dynamics are controlled by SAWs. In each operation, two
qubits travel through channels separated by a potential barrier. At the locus of the entangling
operation, this barrier is lower, allowing the electron qubits to swap via the exchange
interaction.

Fig. 4.1 shows a SAW device designed to carry out a power-of-SWAP entangling opera-
tion on two electrons. The device is an adaptation of the one presented in [19]. Sinusoidal
SAWs are generated by interdigitated transducers and propagate as transverse plane waves
in the positive y-direction. The SAWs modulate the electric potential of a piezoelectric
substrate to produce a train of quantum dots propagating along channels defined by metallic
gates. The SAWs trap pairs of electrons from a two-dimensional electron gas in the same
minimum [185], with one electron in each channel (separated in the x-direction by the tunnel
barrier). The SAW then carries the electrons through their respective channels. In the center
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of the device, where the barrier is lower, the tunneling rate can be controlled by voltages on
TBL,TBR.

The quantum dynamics of the system are generated by the travelling SAWs, therefore
the voltages on the surface gates can be held constant throughout the entangling operation.
This gives the SAW-based system a significant advantage over static qubit systems, which
are controlled by generating voltage pulses that introduce charge noise and can induce stray
SAWs, causing decoherence.

Fig. 4.1 (a) Cross section of the potential layout in the region of high barrier alongside a
trace of the initial state of the wave function along the x-dimension. (b) Schematic of a
SAW-based power-of-SWAP device. Electrons are carried by SAWs from bottom to top
(positive y-coordinate) along two channels, undergoing a power-of-SWAP operation in the
central gate region. Dotted lines show the path electrons can take through the device. Figure
from [140], made by H. Lepage.

In what follows we will consider a device consisting of a GaAs/AlGaAs heterostructure
containing a single layer of two-dimensional electron gas trapped in a quantum well. On the
top surface, a pattern of Schottky gates creates the two channels running in the y-direction,
separated by a central barrier. We define the barrier’s center as the origin of the x-direction
and label the two channels with subscript L (left) and R (right) for negative or positive x,
respectively. Negative voltages on the gates labelled by SL, SR, SGL, SGR, DL, DR generate
the outer walls of the two channels. Voltages on the gates labeled CB, TBL, and TBR control
the profile of the central barrier, and ensure that it strongly separates the two channels, except
at the middle part of the device in the y-direction, where the barrier is lower. It is in the region
of lower central barrier that the entangling operation occurs. TBL and TBR are sufficiently
close that they only produce a single potential maximum, in the x-direction, between the two
channels (Fig. 4.1(a)).
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III Analytical Model

To describe quantum dynamics in this device, we use a two-particle Hamiltonian of the form

Ĥ = ∑
i=1,2

(
p̂2

i
2mi

+V̂D(ri)+V̂SAW(t,ri)

)
+V̂C(r1,r2), (4.2)

where V̂C(r1,r2) is the two-particle Coulomb potential, V̂SAW(t,r) is the SAW potential
carrying the electrons along the channels and V̂D(r) is the device potential. This potential is
made up of two parallel harmonic channels running along the y-dimension, coupled in the
central gate region by a Gaussian tunnel barrier, forming a double quantum dot with harmonic
confinement perpendicular to the channels, along the x−dimension. An explicit expression is
given in Appendix VII. By boosting our reference frame to match the velocity of the SAW,
which is constant, we can treat V̂SAW(t,r) as a time-independent confining potential along
the channel direction. Finding the eigenstates of the boosted time-independent Hamiltonian
using a number basis derived from second quantization allows us to obtain the two-particle
wave functions when the barrier between both channels is static. Since the potential does
not have any explicit spin dependence, because of a weak Lorentz term, single-qubit spin
rotations do not occur.

We assume that the electrons in both channels of the device in Fig. 4.1(b) are in a
separable spin state initially. At this stage, there is a high potential barrier between the
channels and they are too far apart to interact. We also assume they are in eigenstates of the
z-axis spin. The spin part of the wave function can thus be labeled |s1⟩|s2⟩, meaning that
the first electron is in spin state s1, and the second one is in spin state s2. For a double-dot
potential, the two-particle ground state is symmetric in spatial coordinates, described by
a spatial wave function |ΨS(r1,r2)⟩, while the first excited state is anti-symmetric, with a
spatial wave function |ΨA(r1,r2)⟩. We call the spin-antisymmetric combination a singlet
state |S⟩, which corresponds to the ground state with energy ES, and the symmetric state a
triplet state |T⟩, which is the first excited state with energy ET (see Fig. 4.2):

|S⟩= 1√
2
|ΨS(r1,r2)⟩(|↑⟩|↓⟩− |↓⟩|↑⟩) (4.3)

|T⟩= 1√
2
|ΨA(r1,r2)⟩(|↑⟩|↓⟩+ |↓⟩|↑⟩) (4.4)

We choose the double-dot potential of the gate region such that an equal linear combination
of these states has both particles well localized in different channels. This results in the
eigenstates of initial high tunnel barrier and those of the gate region having a high overlap.
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The disturbance introduced by adiabatically changing the tunnel barrier in the SAW reference
frame is thus minimized. We can write down combined space and spin states as |s1s2⟩LR,
with particle 1 being in the left channel with spin s1 and particle 2 being in the right channel
with spin s2. They are linear combinations of the triplet and singlet states:

|↓↑⟩LR =
1√
2
(|T⟩+ |S⟩)

=
1√
2

(
|ΨRL(r1,r2)⟩ |↑⟩|↓⟩− |ΨLR(r1,r2)⟩ |↓⟩|↑⟩

)
,

(4.5)

|↑↓⟩LR =
1√
2
(|T⟩− |S⟩)

=
1√
2

(
|ΨLR(r1,r2)⟩ |↑⟩|↓⟩− |ΨRL(r1,r2)⟩ |↓⟩|↑⟩

)
,

(4.6)

where |ΨLR(r1,r2)⟩ denotes a spatial state with particle 1 in the left channel (negative x)
and particle 2 in the right channel (positive x). These take the form

|ΨRL(r1,r2)⟩=
1√
2

(
|ΨS(r1,r2)⟩+ |ΨA(r1,r2)⟩

)
, (4.7)

|ΨLR(r1,r2)⟩=
1√
2

(
|ΨS(r1,r2)⟩− |ΨA(r1,r2)⟩

)
. (4.8)

A system placed in such a linear superposition oscillates coherently with the period,
2π h̄/(ET −ES), determined by the energy difference between the ground state and first
excited state. A full SWAP operation takes half of this period whilst the root-of-SWAP
operation takes a quarter of it, i.e. half the duration of a SWAP. In the limit where the on-site
Coulomb energy is much greater than the hopping energy, the doubly-occupied states have
vanishingly small probability amplitudes and can be ignored [19]. The state during the time
evolution is

|ψ(t)⟩= 1√
2

{
|T⟩+ exp

(
−it
h̄

∆E
)
|S⟩
}
, (4.9)

where ∆E =ET−ES. This description of the power-of-SWAP operation allows us to calculate
the probabilities of observing spin-up (spin-down) particles in the left (right) channels after
the operation. The probability of measuring a swapped state, assuming an initial state |↑↓⟩LR
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Fig. 4.2 Two-particle spatial wave functions. (a) Ground state |ΨS⟩ (y1 = 0 and y2 = 0).
(b) First excited state |ΨA⟩ (y1 = 0 and y2 = 0). (c) Combination of the ground state and first
excited state |ΨLR⟩. The first particle is localized in the left channel and the second particle
is localized in the right channel (y1 = 0 and y2 = 0). (d) Gaussian spread of both particles in
the y-dimension (x1 = 0 and x2 = 0). All four panels show the wave function divided by its
extremum, with the z-axis in arbitrary units.

and a fixed time of interaction τ , is given by

PSWAP (J) = | ⟨ψ(t = τ)| ↓↑⟩LR |2

= sin2
(

1
2

J · τ
)
,

(4.10)

where J = ∆E/(2π h̄). This probability, given an input state, depends only on the energy
difference between the triplet and singlet states, defined by exchange energy, which in turn is
a function of device potential. While any double-dot type potential will result in eigenstate
structure to be qualitatively similar to what is described above, some fine-tuning is needed to
get the overlap and energy difference ∆E just right for our application. Having the inter-dot
energy barrier too high will result in a fully separable degenerate state with ∆E = 0, which
will prevent any interesting interaction from happening. This is desirable when we do want
the channels/qubits to be separate, but not during the quantum operation. On the other hand,
having the barrier too low will result in a high overlap between the left and right parts of the
wavefunction, as well as in a high ∆E, causing their interaction to be strong and fast. This
would make fine control of the operation challenging. Additionally, the overlap between the
qubits in the middle of the dot would cause a loss of fidelity when the barrier is raised again
to end the SWAP operation. The potential values we’ve found here are realistic and present a
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good balance between speed of operation, fidelity, and ability to control the interaction as
desired (by being able to stop at a required power-of-SWAP).

IV Simulations and results

Numerical simulations of the two-particle dynamics over two dimensions are computationally
expensive. The simulations ran here on the hardware described in Ch. 2 take around 10
hours to complete, and we need to sweep over many parameter values to find the right ones,
requiring us to run many simulations in parallel. However, the ability to model a complete
set of energy eigenstates reveals a more complicated behavior, in contrast with analytical
two-site models or one-dimensional simulations - we find ourGPU-accelerated numerical
simulations indispensable. In this section, we present the numerical results of entanglement
generation via two different root-of-SWAP implementations [32, 19, 165]. In both cases, we
find that the realistic dynamics deviates from the simpler models.

IV.I Numerical methods

The eigenstates of the double-dot system are obtained by numerically solving the Hamiltonian
built using the allowed two-particle basis states (Ch. 2 Sec. II). To reduce the size of our
matrix representation, we can find the initial state of the two-particle system efficiently by
using a momentum-space (rather than a position-space) eigensolver (Ch. 2 Sec. I.II). Since
the system of interest is very close to the ground state, only a small number of momentum
basis states are needed. The ground and first excited spatial states found using this method
are presented in Fig. 4.2.

These time-independent methods are sufficient to find the initial state of the system and
to describe its time evolution in a constant potential. However, when the potential varies
as the electron travels across the device, time-dependent simulations need to be used. We
evolve the TDSE iteratively using the staggered-leapfrog algorithm [89, 15, 153]. For the
time-dependent evolution, we also find that using the momentum representation is optimal.
While the decrease in simulation time due to reduced number of points is modest, as the
overhead of transforming to momentum space is still significant at this problem size, we
obtain increased fidelity this way. Similarly to the time-independent solution, this can be
explained by the system staying very close to its ground and excited states, which in turn are
well-represented by low-lying momentum modes. To time-evolve in momentum space, the
staggered-leapfrog algorithm is transformed into momentum-space as described in detail in
Ch. 2.
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IV.II Coulomb tunneling entanglement generation

Building on a proposal from Ref. [19], we explore an exchange-interaction based method
for the generation of entanglement between two electrons in a SAW system. As described
in Section III, the two electrons occupy adjacent channels separated by a tunneling barrier,
suppressing any wave function overlap. When the electrons enter the low-barrier gate region,
they can tunnel through to the other channel at a rate that is determined in part by the barrier
height (which controls the wave function overlap) and in part by the Coulomb force (which is
indirectly controlled by barrier width), thus allowing for the control of the power-of-SWAP
gate by tuning the appropriate Schottky gates. Fig. 4.4 shows snapshots of the wave function
during an entangling operation with realistic experimental parameters. When the potential
barrier is low, the two-particle state undergoes coherent oscillations between the initial state
and the fully swapped state. The duration of the two-particle operation is determined by the
length of the tunnel-coupled region. Since the speed of a SAW is constant in a given material,
the operation is identical for all incoming electron pairs.

Starting with Eq. 4.10, and assuming that J is exponentially dependent on the tunnel
barrier height ATB, and time of interaction τ is fixed, the probability of the final state being
swapped with respect to the initial state has the following dependence on the tunnel barrier:

PSWAP (ATB,τ) = sin2
(

1
2

J0 · e−b·ATB · τ
)
, (4.11)

where J0 and b are numerically determined parameters. Fig. 4.3 shows a fit of our time-
dependent numerical simulation data (See Appendix VII for parameter values used) with
the analytical prediction from Eq. 4.11. It is important to note that although Eq. 4.11 can
describe the behaviour of a power-of-SWAP under ideal conditions, a numerical approach is
required to account for more realistic scenarios. These can include the presence of impurities
in the quantum channels, other sources of noise/decoherence, as well as a finite transition
length between the low and high tunnel barrier heights. The inset in Fig. 4.3 shows the
probability amplitude of each computational basis state as the electrons travel through a
root-of-SWAP gate. Interactions between the electrons are initially prohibited by the high
potential barrier separating them. As they are carried through the interaction region, the
electrons become entangled. Upon leaving the region of low potential barrier, the particles
can no longer interact and the probability amplitudes become constant. We find that the
SWAP probability around PSWAP = 0.5 varies with the tunnel barrier height at a rate of
8.07×10−4 (µeV)−1. This allows for an experimentally viable tunability of the quantum
gate via the control of the tunnel barrier height. Assuming a device temperature of 300 mK,
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tunnel barrier variations due to thermal fluctuations (of magnitude kBT ) will decrease the
root-of-SWAP fidelity by < 0.1%, a value that would not be a main source of error, and in
line with other qubit implementations. This error could be reduced by increasing the height
of the tunnel barrier, at the cost of extending the operation time.

Fig. 4.3 Probability of SWAP as a function of tunnel barrier height for fixed interaction
duration. Time evolution simulation results (circles) are fit using Equation 4.10 (solid
line). The parameters J0 = 2.888ps−1 and b = 0.933meV−1 were found numerically. The
inset figure illustrates the occupation of the computational basis states as well as the double
occupancy states. In this example, the input state |↑↓⟩LR undergoes a root-of-SWAP operation
with finite tunnel barrier potential ramps.

IV.III Comparison to Models

To solve the dynamics of the power-of-SWAP operation in our heterostructure SAW-based
device, including the 2D spatial extent of the wave function and a time-dependent potential,
numerical simulations must be used. However, to avoid lengthy and complicated computa-
tions, ∆E can be estimated using simplified two-site models, thus getting an approximation
for the power-of-SWAP extent via Eq. 4.10.

Assuming a tight-binding-like model, where electrons can tunnel between the quantum
dots, we can estimate the full 2D time evolution by applying the Hund-Mulliken model
for molecular orbitals [32].This model builds a two-particle basis from right- and left-
localized single-particle states |φ±⟩. These states are orthonormalised to |Φ±⟩ = (|φ±⟩−
g |φ∓⟩)/(

√
1−2Sg+g2), where S = ⟨φ± | φ∓⟩ is the wave function overlap and g = (1−√

1−S2)/S. The singly- and doubly-occupied two-particle basis is constructed with direct
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Fig. 4.4 Entanglement generation using the Coulomb tunneling method. Top and middle
row: trace over the x-dimension and y-dimension respectively for the initial state (left), root-
of-SWAP state (centre), and SWAP state (right) of the wave function. Bottom row: trace over
the second particle for the initial state (left), root-of-SWAP state (centre), and SWAP state
(right) of the wave function. Coordinates are chosen to be in the SAW frame of reference
with y = 0 corresponding to a SAW minimum and x = 0 the peak of the tunnel barrier.
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products:

|Ψs
∓⟩=

1√
2
(|Φ+⟩|Φ−⟩∓ |Φ−⟩|Φ+⟩) ,

|Ψd
∓⟩= |Φ∓⟩|Φ∓⟩ .

(4.12)

The Hamiltonian in this basis has the form:

Ĥ =


V− 0 −

√
2th 0

0 V+ −
√

2th 0
0 −

√
2th U X

0 −
√

2th X U

 , (4.13)

where each entry is defined as:

U =
e2

4πε
⟨Ψd

±|
1
r
|Ψd

±⟩ , (4.14)

X =
e2

4πε
⟨Ψd

±|
1
r
|Ψd

∓⟩ , (4.15)

V+ =
e2

4πε
⟨Ψs

+|
1
r
|Ψs

+⟩ , (4.16)

V− =
e2

4πε
⟨Ψs

−|
1
r
|Ψs

−⟩ , (4.17)

and th is the hopping term

th = ⟨Φ±|
p̂2

2m
|Φ∓⟩−

e2

4
√

2πε
⟨Ψs

+|
1
r
|Ψd

±⟩ . (4.18)

Solving the Hund-Mulliken Hamiltonian in Eq. 4.13, we find the eigenenergies associated
with the singlet and triplet states and define the SWAP frequency in terms of U and th:

J =
1

2π h̄

[
V−−V++

1
2

(√
U2

h +16t2
h −Uh

)]
=

ET −ES

2π h̄
, (4.19)

where Uh =U −V++X .
Alternatively, the evolution of the two-particle state can be modelled with the Hubbard

approach for short range Coulomb interaction without magnetic fields [19]. The simplified
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2-site Hamiltonian in the second quantization basis from Eq. 4.12 then has the form

Ĥ =



V 0 0 0 0 0
0 V 0 0 0 0
0 0 0 0 −tLR −tLR

0 0 0 0 tLR tLR

0 0 −tLR tLR U 0
0 0 −tLR tLR 0 U


, (4.20)

where tLR is the hopping term

tLR = ⟨↑|L
p̂2

2m
|↑⟩R = ⟨↓|L

p̂2

2m
|↓⟩R , (4.21)

U is the on-site energy

U =
e2

4πε
⟨↑↓|LL

1
r
|↑↓⟩LL = ⟨↑↓|RR

1
r
|↑↓⟩RR , (4.22)

and

V =
e2

4πε
⟨↑↑|LR

1
r
|↑↑⟩LR = ⟨↓↓|LR

1
r
|↓↓⟩LR . (4.23)

Solving this Hamiltonian, we find the eigenenergies associated with the singlet and triplet
states and define the SWAP frequency in terms of U and tLR:

J =
1

4π h̄

(
−U +

√
U2 +16t2

LR

)
=

ET −ES

2π h̄
. (4.24)

To summarise, by solving the Hund-Mulliken Hamiltonian we find the eigenenergies
associated with the singlet and triplet states and define the SWAP frequency in terms of the
on-site energy U and the hopping term th:

J =
1

2π h̄

[
V−−V++

1
2

(√
U2

h +16t2
h −Uh

)]
=

∆E
2π h̄

, (4.25)

where Uh =U −V++X .
For the simplified Hubbard Hamiltonian, this expression reduces to

J =
1

4π h̄

(
−U +

√
U2 +16t2

LR

)
=

∆E
2π h̄

. (4.26)

For realistic Hamiltonians, it is impossible to obtain U analytically. Instead, we numeri-
cally calculate this parameter. To avoid unphysical results introduced by the 1/r factor, a
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softened (avoiding division by 0) Coulomb potential is used [165] both in the models and the
numerical simulations throughout this work. We implement this softening by assuming that
the wave function has a Gaussian spread in the third dimension, with a standard deviation of
∆z.

We compare both the Hubbard model and the Hund-Mulliken method described above to
our simulation results for a range of ∆z. We find a close match between the frequency of the
SWAP operation as calculated by our time-dependent numerical solver and these obtained
by solving the eigenvalue problem directly. Both models (Eq. 4.25 and Eq. 4.26) show
significant discrepancy for most values of ∆z. Moreover, the Hund-Mulliken model predicts
negative frequencies for ∆z < 1 nm (which are unphysical in this context). We conclude
that although both models provide a reasonable qualitative prediction of the two-particle
dynamics for Gaussian spread of ∆z ∼ 10−100 nm (on the same order as 2DEG width), a
more sophisticated numerical approach, such as the one used in this work, is required to
obtain precise quantitative dynamics. A quantitative comparison of both analytical models
with our simulations can be seen in Fig. 4.5.

Fig. 4.5 Comparison to analytical models. Power-of-SWAP frequency as a function of
effective wave function spread in the z-dimension. Coulomb softening accounts for the finite
z-dimension and plays an important role in determining the rate of the exchange interaction.

IV.IV Entanglement generation via electron collisions

In a previously suggested root-of-SWAP scheme [165], two electrons are travelling in
individual channels separated by a high potential barrier, such that there is no wave-function
overlap. The potential barrier abruptly (or diabatically) changes in the SAW reference frame
such that the two channels are joined to create a global potential minimum between them.
Without the presence of the barrier, both electrons fall towards one another in a harmonic
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oscillator potential and interact via the Coulomb force. Once the operation is completed, the
central barrier is reintroduced, causing the reappearance of separate decoupled channels. As
the quantum states of particles in layered semiconductor technologies are confined in the
dimension perpendicular to the quantum wells, which has a constant potential throughout the
device, the third dimension does not significantly affect the operation. However, we find that
the previous reduction to 1D is an oversimplification, as the possible spatial dynamics in the
second dimension strongly affects the electron-electron interactions.

Here, we simulate this single-shot (i.e. in a single collision) entanglement generation, and
we find that under current experimentally realistic parameters, it is impossible to generate a
root-of-SWAP, or any significant entanglement over the x-dimension.

Fig. 4.6 Entanglement generation via the collision of two electrons. Top and middle row:
trace over the x-dimension and y-dimension respectively for the initial state (left), root-of-
SWAP state (centre), and SWAP state (right) of the wave function. Bottom row: trace over
the second particle for the initial state (left), root-of-SWAP state (centre), and SWAP state
(right) of the wave function. Coordinates are chosen to be in the SAW frame of reference
with y = 0 corresponding to a SAW minimum and x = 0 the middle of the harmonic channel.

Fig. 4.6 shows snapshots of the two-electron wave function undergoing a single collision
in two dimensions. The wave function remains fully separable along the x-dimension.
However, in the y-dimension, it transitions from a Gaussian-like low-energy state to a more
spread-out entangled state. This is conflicting with the desired outcome of generating a
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maximally entangled state in the x-dimension. The third column of the figure, which shows
the wave function at the time of a full SWAP, should look like the first column, only reflected
aroung the x = y axis, but this is not the case. The cause of this is the splitting of the wave
function seen in the lower middle panel - the particles split in the y-dimension and avoid each
other, which modifies the interaction compared to one dimension. The operation is effectively
a SWAP instead of a root-of-SWAP, with the additional downside of exciting higher-energy
states in the y-dimension. These unwanted spatial excitations of the wave function lead to
lowering the spatial fidelity of the operation and thus it is not possible to concatenate multiple
operations for useful quantum information processing. This also prevents the restoration of
the wave function to its original state by applying the SWAP twice, a fundamental property
of this operation. We find that increasing the y confinement does not prevent this behaviour
until the SAW amplitude is increased by a factor of order 103, where the problem effectively
reduces to 1D. However, this would require SAW amplitudes on the order of 104 meV, which
is experimentally unrealistic [218]. Varying the x confinement over a wide range also does
not solve the issue. Therefore we conclude that the collision method is unable to produce the
root-of-SWAP operation in a realistic 2D scenario.

V Experimental Sensitivity

Here, we investigate the power-of-SWAP operation’s sensitivity to disturbances in ATB and
τ , which the output probabilities depend on. Methods used here are similar to what is used
in Ch. 8, borrowing from information theory. From an information-theoretical perspective,
an experiment’s sensitivity to an unknown physical parameter, θ , is quantified by the Fisher
information:

F(θ) = ∑
i

P(Mi|θ)
[

∂

∂θ
lnP(Mi|θ)

]2

, (4.27)

where Mi denotes the ith measurement’s outcome [104]. Given N experimental runs, the pre-
cision of an estimate θ̂ of θ is bounded by the Cramér-Rao inequality: Var(θ̂)≥ [NF(θ)]−1,
such that the greater the Fisher information, the smaller the estimator’s variance can be
[78]. Using the output probabilities from Sec. III, we find that F(ATB) = b2τ2J2

0 e−2bATB : the
ability to estimate ATB decreases exponentially with ATB itself. However, for parameters that
yield the root-of-SWAP operation (ATB ≈ 3.86 meV) we find that F(ATB)≈ 2.15 (meV)−2.
This value of F(ATB) lower bounds the standard deviation of ATB: σATB ' 0.012 meV in
an experiment with N = 3000 trials. Despite the exponentially decreasing sensitivity of
tunnel-barrier heights, the relevant values for a root-of-SWAP operation are within the exper-
imentally viable regime [217] specified in Appendix B. The Fisher information about τ is
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F(τ) = J2
0 e−2bATB is constant with respect to τ itself. For the ideal root-of-SWAP parameters,

we find that F(τ)≈ 6.17×10−3 ps−2, which gives a lower bound on the standard deviation
of τ: στ ' 0.23 ps, when N = 3000.

VI Discussion And Conclusion

The two-qubit entangling operation is an essential building block of a quantum information
processor. We find that realising the power-of-SWAP operation via electron collision [165]
suffers from significant problems, whilst an implementation based on tunnelling [19, 32] is
shown to be realizable with high fidelity even when experimental control of the tunneling
barrier is imperfect. We find that this entangling operation governed by the exchange
interaction and coherent tunneling of electrons offers a more stable approach and makes
high gate fidelities possible. We have shown that surface-gate-controlled flying electron-
spin qubits are able to generate entanglement through the power-of-SWAP operation in a
reliable and stable fashion using the exchange interaction (tunneling) method. We show that
the problem of wave function dispersion can be solved through the use of SAWs, which
generate the potential confinement needed to preserve the wave function’s profile. We
present accurate numerical solutions to the time-dependent Schrödinger equation using a
staggered-leapfrog method and we investigate previously proposed schemes for generating
entanglement between electron-spin qubits.

Our two-particle simulations use experimentally realistic parameters and potential layouts
and show that such devices are readily realizable using current semiconductor fabrication
techniques. While the behaviour of an ideal system can be predicted exactly by solving the
Hamiltonian and assuming that the electrons are initialized to and remain in a combination of
triplet and singlet states, the advantage of our numerical methods is to simulate realistic entan-
gling operations. Although these simulations were focused on the experimental parameters
of GaAs-based devices, the same behaviour is expected in other SAW-based semiconductor
devices. Moreover, our findings can be generalized to systems that do not include SAWs.
Static quantum dots, confined in every dimension and separated by a tunnel barrier interact
in the same way. Such a tunnel barrier can be modulated using fast microwave pulses [30] to
reproduce the two-particle dynamics presented in this paper. A static root-of-SWAP gate was
recently realised with high fidelity using phosphorus donors in silicon [103], proving that
such systems are achievable experimentally. Coherent spin state SWAP operations between
electron-spin qubits in a quadruple array of semiconductor quantum dots were also lately
achieved [117].
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Our results provide new evidence that an entangling root-of-SWAP gate based on the
exchange interaction is experimentally viable in SAW-based semiconductor heterostructures.

VII Parameter values

Here we present exact parameter values used in the simulations in this chapter, as well as the
details of functional potentials and Coulomb softening used. This should enable anyone to
reproduce this work, as well as compare the values to some real experiment.

Parameter Value range
Distance between channels 80 nm
Tunnel coupled region start yd = 36 nm
Tunnel coupled region end yu = 144 nm
Interaction time τ = 36 ps
SAW amplitude ASAW = 25 meV
SAW wavelength λ = 1µm
SAW velocity v = 3 nm / ps
Harmonic channel confinement ω2

x = 0.002 meV
nm2me

Electron effective mass 0.067 me
Relative permitivitty (GaAs) 13.1
Gaussian tunneling barrier amplitude A1 = 15.3 meV
Gaussian tunneling barrier width σ1 = 30 - 40 nm
Gaussian barrier amplitude A2 = 510 meV
Gaussian barrier width σ2 = 0.8 nm
Transition between barrier heights σy = 10 nm
Coulomb softening ∆z = 10 - 100 nm

Table 4.1 Ranges of parameter values used in simulations.

Explicit form of potentials used in Eq. 4.2, in terms of the parameters above, in reference
frame of the SAW:

VD(x,y) =
me

2
ω

2
x x2 +A1 exp

(
−x2

2σ2
1

)
+

A2

2
exp
(
−x2

2σ2
2

)
×
(

2− tanh
(

y− yd

σy

)
− tanh

(
−y− yu

σy

))
.

(4.28)



VII Parameter values 83

VSAW(x, t) =
ASAW

2

(
1− cos

(
x− tv

λ

))
(4.29)

VC(r) =
e2

4
√

2πε∆zU(−1
2 ,0,

r2

2∆2
z
)

(4.30)

where U is the confluent hypergeometric function of the second kind, which encapsulates
a Gaussian spread with standard deviation ∆z in the z-dimension:

U(a,b,z) =
1

Γ(a)

∫
∞

0
e−ztta−1(1+ t)b−a−1dt. (4.31)

If this kind of “Coulomb softening” is not performed, the potential will suffer from divide-
by-zero errors when the two particles overlap. This is a result of restricting the calculation to
2D. Doing the full 3D calculation would be very computationally expensive. To implement
an effective spread in the z-dimension in a physical way, we assume that the third dimension
of some thickness ∆z exists, and then integrate over the z-dimension for an effective Coulomb
strength, assuming that the charge distribution is Gaussian in this dimension. It turns out
that this integral can be expressed in terms of the confluent hypergeometric function of the
second kind, as per Eq. 4.31. This mathematical model has the desired properties - when the
inter-particle distance r is small, the effective distance for the Coulomb force calculation is
around ∆z, while at a large distance, the effective distance is very close to r itself. Therefore,
this approximation is physical and realistic, and the softening parameter ∆z is easy to interpret
- it’s simply the spread of charge in the “extra” z-dimension.





Chapter 5

Mapping the charge states of
semi-isolated DQDs using a single donor
device

I Introduction

Recent progress in lithography techniques like focused helium ion beam milling [229] or
extreme ultraviolet lithography [67] as well as advances in single ion implantation [113] have
allowed for shrinking the transistor feature size to the atomic level without compromising on
the quality of the surfaces and interfaces, thus opening the way to new applications in high
speed computing and high density information storage [246, 161]. Due to the simplicity of
their energy level structure, such ultimate devices are generally easier to control, easier to
model and ultimately better candidate for ultralow energy-consuming electronics compared
with standard Metal-Oxide-Semiconductor (MOS) structures. Currently, such a downscaling
can be achieved by implanting deterministically single ions [113] or low concentration
dopants (non-deterministic approach) into a nanoscale architectures. However, the first
requires high technical expertise and world-class equipment whereas the second relies on
randomness and consequently lacks scalability. Such a device can also be fabricated by
depositing single atoms with nanometre precision using the tip of a scanning transmission
microscope [195]. In this case, requirements for the mechanical stability of the tip implies
either a long processing time or the purchase of expensive corrective and stabilization
softwares [247, 182]. However, the need for both a cost-effective, fast and reliable solution is
still required for carrying out experimental investigations to devise atom-based applications.
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We first demonstrate how to electrostatically isolate a single donor from the large en-
semble of dopants before investigating the system characteristics and dynamics under gate
voltages. We finally show this device can be used as a single atom detector by tuning the
detection level to the D− state and sensing the charge occupancy of a nearby capacitively
coupled double quantum dot [73].

II Device fabrication and isolation of single donors

Most of nanoscale silicon transistors currently used in industries make use of a metal-oxide-
semiconductor structure which allows for controlling the number of electrons down to the
single electron regime with great accuracy. Fin-field effect transistors (FinFETs) are one of
many successful examples of such a nano-engineering. Further down-scaling to sub-10 nm
structures have been demonstrated [201, 21] and reliable Coulomb oscillations have been
obtained up to room temperature. However, the repeatability of the process has not yet been
demonstrated at the industrial scale. Still, some of these structures have been proposed as a
basic element in quantum information architectures [23].

In contrast, doped devices are often overlooked, despite offering a reduction in the
number of processing steps by avoiding the use of top- or back-gates. This lack of interest is
partly due to the intrinsic localization effects as well as the randomness in dopant positions
and ionization energy that contribute to the 1/ f noise (beyond undoped device levels) and
decrease the detection efficiency. In this type of architecture down-scaling is challenging
owing to the high dopant density and the difficulty in realising a dopant free-tunnel barrier.
However, in much larger devices, one can take advantage of the resulting glass properties
of such a material, in particular the charge rearrangement and the long relaxation time T1,
to electrostatically isolate a single donor from a large number of dopants. This can be
achieved by modifying the electrostatic potential of the quantum dot at room temperature and
then altering charge relaxation mechanisms while the device is cooled down to the lowest
temperatures. To this end, a 60 nm diameter single electron transistor was patterned from a
highly phosphorous doped silicon-on-insulator (SOI) material using standardized fabrication
process that is described elsewhere [219]. The dopant concentration is about 3×1019 cm−3,
giving an average donor separation of about 2 nm. The various elements of the devices are
defined by etching the SOI down to the underlying silicon oxide in selected areas leaving
side gates capacitively coupled to the quantum dot and tunnel barriers forming at constriction
points (Fig. 5.1 a)). An additional gate connected to a double quantum dot is patterned in the
same way.
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The experimental part of this work and all measurements were conducted by Thierry
Ferrus. A positive source-drain bias VSD0 larger than the donor ionization energy (eVSD ≫
45meV) is first applied to the device at room temperature, creating a steep potential profile
across it without affecting its operability or performance. The device is then slowly cooled
down to the base temperature.

By decreasing the temperature, the states located at the edge of the structures start
localising first, creating electrostatic tunnel barriers preferentially at the constriction locations.
This is mainly owing to the presence of high density non-(100) surfaces, dielectric screening
[224, 2], and the formation of P2O5 compound within 10 nm of the edges. These states
always exist in nanoscale structures, even if highly doped [73].

Under this condition, a charge imbalance appears in the quantum dot, with donors at the
center and at the source-side of the island ionizing and creating P positive centers, while a
small number N ≪ P of electrons accumulate at the edge of the dot near the drain (left side)
barrier (Fig. 5.1 b) and c)). Raising VSD0 allows for increasing the electron tunneling rate but
also facilitates for the higher energy confined electrons to escape to the drain contact due
to the increase energy windows for conduction, thus decreasing the number of accumulated
electrons. Due to the inherent insulating behaviour of the devices 1 (Fig. 5.2), the shape of
the tunnel barriers and consequently the tunneling rates are affected when the temperature is
lowered. Consequently, most donors remain ionized during the cooling process, providing
that the flow of electrons through the dot, and consequently the tunneling rate through the
device remain steady. This is achieved by monitoring the current ISD and maintaining it at the
room temperature value by continuously adjusting the source-drain bias during the cooldown
process accordingly.

Once at the base temperature, the bias is slowly decreased to zero. Electrons are then
allowed to recombine with ionized donors on the source side by flowing both from the source
lead at a rate ΓS, and from the high electron density region near the drain barrier at ΓA ≪ ΓS.
The initial situation in the quantum dot (N ≪ P) is then the one of a low electron regime.
The variation of conductivity in temperature clearly shows an Efros-Shklovskii variable
range hopping is taking place in a large range of temperatures. The small deviation from
the usual ∼ T−1/2 dependence [64] has already been observed in silicon MOS device and
can easily be explained by partial screening in the structure due to weak disorder, e.g. the
Coulomb gap is getting partially filled [72]. This behaviour demonstrates the role of electron-
electron interaction during the cooldown. At high temperatures, charge rearrangement is then
preferentially done with next-neighbour donors with high energy level difference. On the

1Doping concentration is about 3 ×1019 cm−3 which provides metallic behavior in the large areas of the
device (source and drain leads). However, localization at the edge of the structure, near the Si-SiO2 interface.
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Fig. 5.1 Electronic process involved in the isolation of the donor : a) device prior to biasing,
b), during bias and c), after the creation of the electrostatic tunnel barrier isolating the
donor. d) Device under study with the quantum dot (bottom) and the semi-connected double
quantum dot (top).

contrary, at low temperatures, hopping occurs between donor pairs well separated spatially
but with a small difference in energy.

Consequently, electron dynamics are governed by electron glass behaviour [55] (Fig.
5.2), with shallow traps filled first while occupancy of deeper traps remains unsettled for
much longer times. Localization and trap density are defined by the device structure and
intrinsic randomness due to the fabrication process, including doping. Because of the spatial
location of the traps in the structure, donors at the center of the quantum dot are the first to
be neutralised, then followed by the edges states. Traps located in the transport pathway near
or at the tunnel barrier are less susceptible to electron screening due to the presence of the
tunnel barrier, and so are filled the latest. In the absence of sufficient thermal energy, traps
are filled at timescales much longer than potential fluctuations and long-term electrostatic
deformation is present in the system. This implies that already ionised donors will remain
ionized for a significant time, allowing for the creation of an additional electrostatic tunnel
barrier between the dot and the drain tunnel barrier with height greater than kBT (Fig. 5.1 c)).
The width and height of the newly created barrier will depend on the competition between ΓS

and ΓA but also from the ratio N/P, the latter defining the average settling time ∝ Cn
p ∝ 1/ΓA.

The resulting device structure is then similar to a donor-dot system in series [92]. Such
an hybrid system has now been widely studied in particular for its ability to act as a spin
readout device [209] or memory in quantum information applications [204]. However its’
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Fig. 5.2 Variation of the conductivity with temperature, showing a screened correlated
hopping conduction mechanism. Inset shows the variation of the applied source-drain bias
during cooldown with VSD ≫ EC, with EC being the quantum dot charging energy. The
T−1/2 law demonstrates the presence of electron-electron interaction in an insulating system
compatible with R > λ

−1
TF , with TF the Thomas-Fermi screening length and R the hopping

length.
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realization has mostly been uncontrolled with accidental trapping occurring at the tunnel
barriers, unlike the proposed method.

III Device characterization

The shape of the Coulomb diamonds (Figs 5.3 a), b)) is quite distinct from the one obtained
on the same device but following normal cooling conditions, e. g. all connections grounded
(5.3 c)).The most noticeable difference is the appearance of large diamonds indicating the
presence of impurities in the conduction path (Fig. 5.3 a)). The standard D+−D0 state
transition is also clearly observable at Vg ∼ 3.5 V. The three main diamonds have different
sizes, as well as shifts, indicated by red arrows in Fig. 5.3 a). The manifestation of these
feature differences is reproducible.

III.I Main quantum dot

The first unusual feature is the presence of low intensity, periodic and reproducible conduction
lines at the edge of the diamonds, as shown on high resolution scans. The periodicity in gate
voltage ∆Vg ∼ 75 mV and the gate capacitance Cg ∼ 2.2 aF are similar to the ones obtained
under normal conditions (∆Vg ∼ 78 mV and Cg ∼ 2.1 aF), which points towards the main
quantum dot being the origin of these features. In the absence of an active donor in the barrier,
the corresponding lever arm was found to be αg =

Cg
CΣ

∼ 0.052, giving a charging energy of 4.1
meV. The corresponding overall dot diameter was estimated to be D = e/(2πεε0αg∆Vg)∼
72 nm, with a 58 nm of doped silicon surrounded by a 7 nm silicon oxide. Estimations were
based on an effective permittivity ε = 9.9 for the dot structure (see supporting information).
These values were in excellent agreement with the dot diameter observed after the electron
beam lithography, but before oxidation of ∼ 60 nm as well as a target protective oxide of 10
nm.

However, after the cooling procedure, the lever arm is found to be significantly larger
(αg ∼ 0.113), indicating a significant decrease in the capacitance of the drain. This can only
occur if the main transport mechanism is governed by a donor in series with the quantum dot
with a much weaker coupling capacitance compared to the drain lead. In that specific case,
the estimation of the dot diameter from the total capacitance is no longer valid.

III.II Single donor and ionised trap

The second effect relates to the appearance of shifts in the large Coulomb diamonds both
for the D+, D0 and D− states (marked by arrows in Fig. 5.3 a)). Understanding the origin
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Fig. 5.3 a) Coulomb diamonds as observed at 300 mK, b) Detailed region around the D+−D0
state transition, with fine features resulting from the main quantum dot, c) Coulomb diamonds
at 300 mK before thermal cycle and cooldown under the strong bias condition, showing the
SET operating as a single quantum dot.



92 Mapping the charge states of semi-isolated DQDs using a single donor device

of these shifts is important in order to precisely determine the donor energies, as well as to
adequately perform the charge detection carried in the next section. Such shifts have already
been observed in FinFets where two donors have been diffusing from the contacts into the
channel region [177]. In that case, transport was found to be mainly dominated by a single
donor (D1) whereas a second donor (D2) had its occupancy modified under certain voltage
conditions. A similar situation happens here.

Charging energies E0 and E− for both the D0 and D− states can be estimated when the
donor D2 is ionised by either measuring the size of the diamonds along the VSD axis or
along the Vg axis, by converting voltages into energies using the measured lever arm αgD ∼
0.022. The corresponding D1 level energies are found to be E0 ∼ 67 meV and E− ∼ 57
meV, consistently by both methods. These values are far greater than the one expected
for isolated donors in bulk silicon [96], but have already been experimentally observed in
silicon quantum dots [92]. However, these differences can easily be explained by the device
structure and doping. In nanostructures, the presence of interfaces reduces the extension
of the wavefunction and in the case of the device studied, the bound state wavefunction is
elongated in the current direction, e.g., along the source-drain axis, while being reduced in
the transverse direction [178]. This significantly increases the separation between the ground
and excited levels, and so between the D0 and D− states. This is particularly true as the
isolated dopants are located at the constriction, e.g., the narrower part of the device. Also,
energy levels are sensitive to the electrostatic environment, in particular the electric field at
boundaries, which leads the effective surrounding permittivity to be renormalised and the
localisation to be enhanced. We did actually estimate the effective permittivity to be ε ∼ 9.9
in the previous sections [224, 2, 211]. This leads naturally the charging energy of the D0

states to be raised to 63 meV without any other adjustment.
When D2 is occupied by an electron, the local electric field at D1 is modified and its

energy levels shifts by the screened Coulomb interaction between the tunneling electron and
the electron localised on D2. This allows us to estimate the average distance between the
two donors in the tunnel barrier to be d ∼ 1.4 nm, a value close to the effective Bohr radius
in silicon (see Sec. VI.II ). Such a cluster state has already been identified in highly-doped
devices by Kelvin probe force microscopy (KPFM) [225]. The shifts observed on the D0

and D− states are a direct consequence of this interaction and are related to the shift of the
D+ state. These features are well described quantitatively and qualitatively by simulations
including a double donor (two donors in parallel with one another) near the drain barrier and
in series with the main quantum dot (see Sec. IV).
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Fig. 5.4 Displacement in VSD and in Vg of the chosen detection point at the D0 state, as a
function of the perpendicular magnetic applied.
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III.III Additional features

Additional features are present in the data. In particular, at large |VSD | and 1V <Vg < 4V,
one can observe the presence of negative differential conductivities (NDC) with isoenergy
lines following the edges of Coulomb diamonds. Such a behaviour has already been observed
and previously discussed in details in similar doped silicon devices [188]. In the latter case,
the NDC resulted from the modification of the shape of the tunnel barrier and so, of the
tunneling rates due to the presence of ionised donors near or at the barriers. This shows the
NDC is an intrinsic property of doped devices, rather than an effect of the cooldown process.
However, the distribution of dopants near the barrier, and so, the shape of the tunnel barrier
favour the formation of isolated but transport-active donors.

We also observed the absence of conductivity at negative source-drain bias and 2V <

Vg < 4V, in the region where D2 is singly occupied and a second electron is tunneling
through the D0 of D1. Such an effect is commonly associated with spin-related phenomena.
Although, full study of spin states and spin interaction in that device has not been carried out,
this observation signifies the role of spin in that region of gate and source-drain biases.

Only a small region at the transition point between the D+ and D0 state shows active
transport. These features can be displaced linearly by the application of a perpendicular
magnetic field both along the VSD and Vg axis (Fig. 5.4), suggesting that the Zeeman effect is
active. Results show an average energy level displacement of ∼ 60µeV T−1, consistent with
the expected value of 58µeVT−1 for a 1s state electron with an effective Landé g-factor of 2.

Consequently, the transition point at Vg ∼ 2.8 V (Fig. 5.3) corresponds well to the state
where an electron is tunneling via the lowest available level of the D0 state of the first donor
D1 whereas the second donor D2 remains ionised in the D+ state.

III.IV Using the D0 state as a charge detector

The previous results allow for the possibility of using the donor as a detector rather than the
main quantum dot, as this would normally be the case in most experiments. Such a scheme
would present a significant advantage in terms of detection efficiency. In an hydrogen-like
donor, only two main states are allowed : the D0 and D− states. If the detection point is
chosen to be at the D+-D0 transition, then tunneling events are restricted to the D0 state
only, as, at low temperatures, the D− is not accessible without significantly modifying Vg

and VSD. The difference in measured currents between the blocked and allowed tunnel
events then makes the detection of capacitively coupled structures easily observable. On the
contrary, in a quantum dot, multi-tunneling processes are allowed, including inelastic ones
like cotunneling. Consequently, the detection efficiency is reduced to a fraction of the one of
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a single donor. Additionally, the donor levels are known to be very sensitive to the electric
field. Any modification of the electrostatic potential would then shift the levels of the donor
and the detection point significantly, improving detection.

In the present device, a semi-connected double quantum dot (SDQD) is capacitively
coupled to the SET and the isolated donor. In the SDQD one dot (QD2) is connected to
a side gate that act both as an electron reservoir and a gate, whereas the second (QD1) is
capacitively coupled to QD2 and the gate V1. In order to properly use the donor as a detector,
a double gate compensation has to be performed. Such a technique consists in modifying
simultaneously a pair of gate voltages in order to eliminate the influence of the main dot
(SET) on the detection. The charge diagram of the double dot is then obtained by sweeping
the gate V2 and stepping the gate V1, while keeping the detection point at the D0 level stable.
This implies modifying the SET gate voltage,

Vg =Vg0 +αV1 +βV2, (5.1)

where α and β are the compensating coefficients and Vg0 the initial value of the gate
voltage. As the detection point is at the edge of the D+-D0 transition, the source-drain
bias VSD also has to be modified in the same way by following the compensation line in
the Coulomb peak (Inset, Fig. 5.3 b)). Optimal detection is obtained with α ∼ 0.284 and
β ∼ 0.373.

The resulting stability diagram between V1 and V2 (Fig. 5.5), despite noisy data, shows
characteristics of a weakly coupled DQD structure, in particular the double periodicity
(∆V1 ∼ 219 mV and ∆V2 ∼ 599 mV), and transition lines nearly parallel to the gate axis.
Periodic current peaks along V1 are consistent with electrons tunneling to the dot closer to
the V1 gate. The absence of sharp edges in the transitions is explained by the small difference
in capacitances between the individual dots of the double quantum dot and the donor, i.e.
Cm1 ∼Cm2(Fig. 5.5 b) ). On the contrary, V2 both acts as a gate and an electron reservoir
to the double dot structure. This gives the possibility for the electrons to tunnel out of the
double dot, consequently causing a larger change in the conductivity at the donor site, and so,
abrupt jumps in V2 (Fig. 5.5 d)). This allows for estimating the gate capacitances for V1 and
V2, e.g, C11 ∼ e/∆V1 ∼ 0.73 aF and C22 ∼ e/∆V2 ∼ 0.27 aF respectively.

We also notice a shift in the pattern along V1 when V2 is increased, e.g. when QD2
acquires an additional electron. In this case, adding an electron to DQ1 from the reservoir
now requires overcoming the interaction energy between the two dots, which leads to a shift
in V1 ∼Cm/CΣ1CΣ2.

Bistable regions are present at around V2 = 1.25 V, 2 V and 2.75 V (Fig. 5.5 a)). One
has to remember that if the value of the conductivity depends on the tunneling events at
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Fig. 5.5 a) Compensated V1 −V2 map of the double dot at 300 mK, b) Current profile along
V1 showing individual electron tunneling events inside the double dot, c) Current profile at
the bistable region involving tunneling events from individual dots to the gate V1, d) Current
profile along V2 indicating electrons tunneling out of the double dot into the gate reservoir.

the detector, the location of the electronic transitions in the compensated diagram result
from electron tunneling in the DQD structure. When V2 increases, three tunneling events are
possible, i) an electron can enter QD2 directly, (ii) an electron can enter QD1 by overcoming
the interdot coupling energy, (iii) an electron enter QD2 while another electron tunnels
between QD2 and QD1. Given the randomness of these processes and the measurement
being time-averaged (tmeasure ≫ ttunnel), this phenomenon is reflected through the observed
bistability. By direct measurements of the periodicities in V1 and V2, the shift in V1 and
the width of the bistable region in V2, it is possible to extract capacitance parameters, in
particular C∗

2 ∼ 0.12 aF, C∗
1 ∼ 0.27 as well as the coupling capacitance between QD1 and

QD2 C
′
m ∼ 0.14 aF. Such a low value for C

′
m explains the approximate square shape of the

charge stability diagram in Fig. 5.5.
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IV Simulations

To confirm the interpretation of the experimental results presented in this work, numerical
simulations were performed. Here, I present the results and compare them to experiments, as
well as describe the methods and theory used.

IV.I Simulation methods and theory

I have used a constant interaction model that solves a master equation to find the equilibrium
states of current and charge occupation at given external voltages. I model the device as a
set of nodes that are able to hold quantised amounts of charge, with external electrodes that
have voltages imposed on them. Additionally, source and drain electrodes serve as reservoirs
of charge that are able to inject and remove electron charges from the system. To solve for
the steady state at given external voltages, one first has to know the potential energy of the
system, depending on charging state of every element [35, 45].
Firstly, I calculate the electrostatic potential energy of the system by summing over all
connected capacitative elements:

UE(N) = ∑
i

Ui = ∑
CiV 2

i
2

. (5.2)

To give a concrete example, imagine the simplest system with an SET serving as a node,
connected to (S)ource, (D)rain and (G)ate electrodes with respective capacitances CS,CD,CG

. In this case, the electrostatic potential energy is:

UE(N) =
1

2CΣ

(−eN +CSVS +CDVD +CGVG)
2, (5.3)

where e is the electron charge, CΣ = ∑iCi is the total capacitance, and Vi are voltages on
respective elements.

If more than one node is present, their interactions have to be accounted for. This situation
can still be described by the capacitive model. Here I present a general method of obtaining
the total electrostatic potential energy of a system of M nodes. We start with a charge vector
QQQ(N1,N2...NM):

QQQ(N1,N2...NM) =


Q1

Q2

. . .

QM

 , (5.4)
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where each Q j =−eN j +∑iCiVi is the electrostatic charge of a single j-th node, where
N j is the number of charges on it, and the sum goes over all connected electrodes (but not
other charge nodes). Then, we write down a cross-capacitance coupling matrix CCC that holds
the information of how the nodes are connected:

CCC =


C11 −C12 . . . −C1M

−C21 C22 . . . −C2M

. . . . . . . . . . . .

−CM1 . . . CMM−1 CMM

 , (5.5)

where the off-diagonal elements Ci j =C ji are the capacitance between nodes i and j if
i ̸= j, and the on-diagonal elements Cii are the total capacitance of node i, which is the sum
over all connected elements. The total electrostatic potential energy is then just the familiar
formula U = 1

2Q2C expressed in matrix form:

UE(N1,N2...NM) =
1
2

QQQTCCCQQQ. (5.6)

However, electrostatic energy is not the only possible contribution in a general case. For
the simulations presented in this work, I also include Coulomb interaction energy, as well as
the energy stemming from quantised energy levels that the nodes can have. The details of
Coulomb energy calculation are presented later in Eq. 5.15. These additional contributions,
that in general depend on charges in the system, are added to the electrostatic potential energy
to get the total potential energy of the system.

I then use a master equation approach to determine the probabilities of a given (charge)
state of the system being occupied. Upon applying the external voltages on the electrodes,
the system should quickly settle in a steady state, where probabilities do not change anymore.
I define a probability vector PPP = (p1, p2, ..., pK), where each probability corresponds to some
overall charge state. With M nodes, that can hold a maximum number of charges Ni each, the
total number of states is K = Πi=M

i=1 Ni, and we map the charge state to its’ index in the same
way one would map a tensor to a one-dimensional index, for example using the row-major
order here. I then define a matrix of transition rates between these states, RRR. The off-diagonal
elements Ri j are transition rates from state i to j, and the diagonal ones are the negative of the
sum of the respective row. This ensures normalisation ∑i pi = 1, as it means that the increase
in probability of moving to a different charge state is accompanied by an equal decrease of
the probability of staying in the same one. The following equation defines the rate of change
of probabilites:
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ṖPP = RRRPPP. (5.7)

To find the steady state, in which ṖPP = 0, one needs to find an eigenvector of RRR with
eigenvalue 0 - the matrix RRR needs to be eigensolved. However, one first needs to calculate
the elements of RRR. As they are transition rates from one charge state to another, one needs
to identify all the processes that can lead to such a change in a given system, and sum over
their rates. We assume that electrons have a thermal Fermi distribution, and that a transition
only occurs if there is an electron with energy such that the transition will be energetically
favourable for the whole system. Therefore, the transition rate from state i to j can be written
down as:

Ri j = ∑
k

Γk fF(∆U), (5.8)

where Γi is some ‘ intrinsic’ rate associated with the process k, and fF(∆U) = 1
e∆U/kBT+1

is the Fermi distribution, with T being the temperature, kB the Boltzmann constant, and ∆U
the potential energy change associated with the transition (defined to be negative if we are
moving to a state of lower potential energy). ∆U can be calculated using the result of Eq. 5.6.
To give a concrete example, consider a quantum dot connected to a source electrode. If the
electrode is at a voltage VS, it will be at chemical potential µS =−eVS. If the dot currently
holds charge N, the transition rate to a state with one extra electron (coming from the source)
is:

RN,N+1 = ΓS fF(∆U −µS). (5.9)

Meanwhile, the opposing transition element is:

RN+1,N = ΓS[1− fF(∆U −µS)], (5.10)

where in both equations I have labeled the charge states with their charge number, and
∆U is the potential energy change of the dot.

In the simulations presented here, I additionally model the tunneling resistance of contacts
between the nodes. Assuming a square potential barrier of height UT and length L is present
and has to be tunneled through to transport the electron, the transition probability standard
formula is:

pT = 16(| ∆U | /UT )(1− | ∆U | /UT )exp(−2L
√

UT− | ∆U |), (5.11)
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where ∆U is the energy difference between the initial and final states. As a reminder, we
have defined ∆U to be negative if the transition is energetically favourable. If it is positive,
I instead set pT = 0, and if the energy difference is sufficient to completely jump over the
barrier (∆U >UT ), I set pT = 1. Here, I incorporate this effect into the transition rate Γ.

Eigensolving the matrix RRR yields the probability vector of the steady state. One can then
calculate the current flowing through the system by summing over appropriate transitions
through the source (or drain) electrode:

IS = ∑
i
−eΓi[ fF(∆U −µS)]pinit

i , (5.12)

where the sum i is over all transitions that leave the source electrode, and pinit
i is the

probability that the initial state one transitions from is occupied. The more useful differential
current dI

dV , which is usually measured in experiments, can then be calculated by simply
taking the derivative with respect to the source-drain bias voltage.

IV.II Simulation results

To explain the features observed in Fig. 5.3 a), we model the device as two donors that are
in parallel with each other, and in series with a large quantum dot. Therefore, the tunneling
through one of the donors must necessarily occur for the charge to flow through the device.
Owing to computational restrictions, we do not actually include the large quantum dot in
series with the donors. This is justified, as the effects of such a dot in series are well under-
stood to produce fine oscillatory features modulating the Coulomb diamonds observed in
Fig. 5.3 b). These features are small enough to not be significant or even visible on the scale
of subplot a). Additionally, we confirm that the effects of this large dot are as expected by
simulating a simplified system, with results presented in Fig. 5.9.

Fig. 5.7 shows the simulation results of tunneling through the two parallel donors D1
and D2. By directly comparing with Fig. 5.3 a), it can be seen that all the main features of
the Coulomb diamonds are well reproduced. There is some mismatch of the finer features
for the negative source-drain voltage, however we attribute them to higher order effects,
the experimental data having a lot of noise in that region, and possible spin interactions, as
discussed in Sec. III.III. The experimental values of capacitances and voltages matches the
values used in the simulation very well. The donors are modeled as having discrete energy
levels on top of their capacitive potential energy. These discrete energy levels reflect the D0

and D− donor charge states. A repulsive screened Coulomb interaction between the charges
that the donors hold is needed to reproduce the observed features, which is expected. Overall,
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Fig. 5.7 shows that the interpretation of experimental data that there exist two isolated donors
that must be tunneled through is correct, as this configuration is necessary to reproduce the
data observed.

Additionally, I simulate a small quantum dot in series with a larger one, to confirm that
the effects of filtering through this large dot produce only fine oscillations modulating the
smaller dot features as expected, and therefore to justify not including this filtering in the
main simulation. The results are presented in Fig. 5.8. The small dot has a total capacitance
of CΣ = 1.8aF , and the larger one CΣ = 12.8aF . The large scale features match that of
tunneling through the small dot only, while the superimposed fine oscillations are due to
filtering through the larger dot.

I also simulate the system before cooling, such that only a single SET is present. The
results are presented in Fig. 5.9, and are to be compared with Fig. 5.3 c). There is a
very good agreement, with a simple Coulomb diamond pattern present. The scale of the
diamonds matches the experimental data well, with the total capacitance used for simulations
CΣ = 33.6aF also matching the experimental measurement of capacitance.

Finally, I simulate how this SET can be used as a detector of charge for a nearby DQD.
By placing the SET nearby the DQD, the charge state of the DQD with capacitively influence
the SET. If tuned correctly and compensated, the charge state of the DQD will be detectable
in the current flowing through the SET. This is especially useful of the DQD is only semi-
connected, so that there is no current flowing through it to infer the charge from. The setup
is presented in Fig. 5.6 - we are measuring differential current through the SET, trying to
observe signatures of charge state changes in the nearby DQD. For this simulation, it was not
feasible to include the isolated donors for computational reasons, therefore it serves as an
illustration of principle for the detection. The differential current going through the SET is
measured as a function of the DQD gates voltage (V1,V2 on Fig. 5.6) . The effect of varying
voltage on the DQD gates is compensated by varying the SET gate voltage VG accordingly,
while keeping a constant source-drain bias that allows the SET current to flow, as per Eq. 5.1.
The results are presented in Fig. 5.10. A checkerboard pattern that can be compared with
Fig. 5.5 is observed, where each square matches a combined charge state of the DQD. This
can clearly be seen by comparing the differential current profile with the calculated charge
states of the DQD, presented in Fig. 5.11. Additionally, it can be seen on Fig. 5.12 that the
charge on the SET stays largely constant over the voltage range explored, which means that
the compensation procedure was successful. The charge is not completely constant over this



102 Mapping the charge states of semi-isolated DQDs using a single donor device

Fig. 5.6 a) Capacitance model for a semi-connected double quantum dot and its detector, b)
Schematics of the energy levels and tunneling processes involving the two donors. Tunneling
from and to the drain contact and the SET are allowed via D1. However, due to the energy
difference, such a process is not allowed in D2 that can only be charged and discharged via
the drain.

voltage range owing to the influence of charges on the DQD, which introduce second-order
effects, first-order being the direct capacitance from V1,V2 to the SET.

Overall, the interpretations and conclusions drawn in this work are supported by numerical
simulations.

V Conclusions

We have shown that a single donor could be electrostatically isolated from a large ensemble
by making use of the intrinsic glassy behaviour of doped semiconductor device and reshaping
the quantum dot potential. The creation of an extra potential barrier allows for realising
a donor-quantum dot hybrid system. By adjusting the gate and source-drain voltages, the
electrostatic influence of the quantum dot can be canceled out and one can use the D0

state to turn the device into a single atom detector and map the charge states of a nearby
but capacitively coupled double quantum dot. Such a method is largely applicable to all
doped semiconductors quantum dots and provides a reliable, low-cost and fast way of
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Fig. 5.7 Differential current through parallel donors D1 and D2, in series with another
quantum dot. This simulation accurately reproduces subplot a) in 5.3, confirming the
interpretation of the data that two donors with discrete energy levels participate in charge
transport.

realising single donor structures that could be utilised for quantum computing applications
and quantum states detection.

VI Supporting information

VI.I Experimental setup

Measurements have been carried in an Oxford Instrument HelioxTM cryostat with a base
temperature of 300 mK and a superconducting magnet of 7 T. The device temperature was
controlled by an Oxford Instrument ITC 503 and measured by either a calibrated RuO2

thermometer in the range 0.3 K to 1.8 K or a CernoxTM thermometer from 1.8 K up to 290 K.
For the DC measurements, voltages applied to the devices (source and gates) were provided
by Hewlett Packard HP 3245A voltage sources with the current being read out by a HP 3458.
The differential conductivity was measured by a Stanford Research SR 830 lock-in amplifier
after adding a small AC signal of about 150µV to the source contact. In all cases, Stanford
Research SR570 current amplifiers were used. Low-pass 10 MHz BNC filters were fitted on
all lines, with a 50 Hz and 100 Hz rejection on AC lines.

VI.II Effective permittivity and self calculation of the dot layer thick-
nesses

In the spherical approximation, the dot diameter D is given by :
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Fig. 5.8 Effects of filtering through a large quantum dot on an SET. The small dot has
a total capacitance of CΣ = 1.8 aF, and the larger one CΣ = 12.8 aF. a) The large scale
features match that of tunneling through the small dot only. b) The inset shows the detail
of superimposed fine oscillations, due to filtering through the larger dot. The scale of these
fine oscillations is much smaller than the large Coulomb diamonds visible in a), because
the large dot capacitance is much greater than the small dot capacitance. Some numerical
artifacts arise in this figure, which should be ignored.
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Fig. 5.9 Single quantum dot transport simulation. Standard Coulomb diamond pattern is
observed as expected. The capacitance values used match with the ones measured experi-
mentally, and the result matches well with differential current observed experimentally in
Fig. 5.6 c).

Fig. 5.10 Signatures of DQD charge detectable through SET differential current. The
checkerboard pattern observable matches the charge stability diagram of the DQD exactly.
The corresponding charge states of the DQD are labeled in red - charge in the right dot,
charge in the left dot.
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Fig. 5.11 Charge states of the DQD, a) for Dot one (left) , b) for Dot two (right), as a function
of the DQD voltages V1,V2 as per the schematic in Fig. 5.6.
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Fig. 5.12 Charge states of the SET, as a function of the DQD voltages V1,V2 as per the
schematic in Fig. 5.6. The charge stays almost constant over the voltage range explored,
unlike the charges on the DQD presented in Fig. 5.11. The variation in charge is caused by
charge transitions in the DQD, which is capacitively coupled.

D = 2(R+L) =
e

4πεeffε0αg∆Vg
, (5.13)

where R and L are the silicon and oxide thicknesses respectively, while the effective
permittivity is given by :

1
εeff

=
R

R+L
1

εSi
+

L
R+L

1
εSiO2

, (5.14)

with εSi and εSiO2 the permittivity of silicon and silicon oxide respectively.
In these devices, the high doping concentration and dielectric screening due to the

proximity of a SiO2 layer modify significantly the effective permittivity εeff of the medium.
In the high doping region, the permittivity of silicon εSi increases with concentration, and
reaches the value εSi ∼ 16 at Nd ∼ 3×1019cm−3.

For a given Coulomb oscillation period and lever arm, we can obtain a set of solution
for R and L. From the measurement of the total dot diameter by SEM, one can determine
R ∼ 30 nm and L ∼ 7 nm, which leads to εeff ∼ 9.9.
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Additional analysis has been carried out by considering the flat disk approximation, but
obtained values for both R and L were incompatible with the observed final dimensions of
the device. Finally, the ellipsoid approximation gave very similar values to the spherical one.

VI.III Estimation of the donor separation

When an electron tunnels via D1 while the second donor D0 state is occupied, the resulting
Coulomb interaction shifts the position of the energy levels by :

∆E+ =
e2

4πεε0d
e−λTFd. (5.15)

The exponential term accounts for the screening due to the other surrounding donors and
electrons while d is the average donor separation, ε the effective permittivity of the medium
calculated previously, and λTF the Thomas-Fermi screening length.

At low temperature and high doping concentration Nd , λTF is given by :

λTF = 4
(

3Nd

π

)1/3

. (5.16)

Direct readout of the shift value could be performed on the VSD axis, and we find the
D+−D0 transition shifts by ∆D+ ∼ 19.0 meV. A similar analysis can be performed on the
Vg axis by utilising the lever arm αgD ∼ 0.022 found previously from the Coulomb diamonds.
In this case we obtain ∆D+ ∼ 20.2 meV.

Using an average donor concentration Nd ∼ 3×1019cm−3, we obtain λTF ∼ 0.8 nm−1

and d ∼ 1.4 nm. This value is of the same order as the λTF and effective Bohr radius in
silicon a∗B ∼ 2.3 nm. This clearly indicates that the strong unscreened correlation does exist
between the two donors but without forming a cluster as a helium molecule.

When the donor D1 is singly occupied, and so in the D0 state, and a second electron
tunnels via the D−, energy levels are expected to shift by ∆E0 when the second donor D2 is
occupied. Shifts can also be related via a capacitive model via

∆E0 ∼
C0

C−
(5.17)

where C0 and C− are the total capacitance for the D0 and D− levels.
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From the size of the Coulomb diamonds we deduce ∆E0 ∼ 16.5 meV in perfect agreement
with the direct measured value of 16.9 meV.





Chapter 6

Conclusion

The main goal of my work presented here was to show how numerical simulations are an
invaluable tool for analysing complex quantum-mechanical systems. The research described,
while it required theoretical analysis and deep knowledge of quantum mechanics, would
not be feasible to complete without these simulations due to its’ complex and unintuitive
nature. The physicist can come up with clever and novel ways of solving a given problem,
but the fine-tuning of parameters in realistic systems is often difficult, if not impossible
to do without the aid of computers. While quantum systems, owing to their very nature,
scale up the computational requirements for simulating them exponentially fast, I show
here that with the latest hardware, exploiting GPU paralellisation and smart algorithms, it is
still possible to accurately model the time dynamics of complicated many-particle systems
described on a fine-grained lattice. The state-of-the-art reached here is two particles in two
spatial dimensions, which is already able to cover many experimental devices. With further
advancements in GPU technology, even three particles should be achievable soon. It needs
to be stressed that these are not merely two-level systems, but spatially extended quantum
particles possessing many degrees of freedom and experiencing physically realistic potentials.

To summarise, in Chapter 3 I have used my simulation software to design control pulses
that are able to optimally control a single charge qubit, taking pulse rise/fall time into account.
The qubit is fully modelled on a spatial lattice, therefore all non-adiabatic effects that could
reduce fidelity, such as fast pulses driving Landau-Zener transitions to eigenstates outside
the computational basis, are included. The adjustment parameters that allow these pulses
to rotate the qubit with significant rise/fall time are found using gradient ascent methods.
This requires running many iterations of the numerical simulation, for which my software
is critical. This iterative search allows one to find pulse parameters that enable reaching
fidelities arbitrarily close to 1. I therefore show that this novel control scheme is feasible,
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and is a significant upgrade in operation time and fidelity compared to simply assuming the
experimentalists can use square pulses. I also show how in certain cases, it can significantly
decrease the effects of charge noise a qubit experiences. This result can be easily generalised
to many other types of qubits, as long as they share a similar form of the Hamiltonian.

In Chapter 4, I have shown how to design a SAW-based two-qubit gate to perform
the Root-of-SWAP operation. In a model device, two spin-qubit electrons travel along
electrostatically defined channels carried by surface-acoustic waves. The channels, originally
completely separated, meet for some length, separated only by a modest tunnel barrier. This
in principle allows them to swap via the exchange interaction. However, given effects such
as Coulomb repulsion, the exact shape of the potential, electron velocity, and the steepness
of the transition from separated to interacting channels, it is very difficult to tune the device
layout to achieve a good operation fidelity. I show that previously considered collision
method of performing this task, described theoretically in one dimension, breaks down in
two dimensions. My GPU-accelerated software is essential to run the many simulations
necessary to tune the device potential so that the operation is achieved with very high
fidelity. Moreover, I show this is possible with parameters currently realistic in experiments,
therefore demonstrating the SAW-based device as potentially competitive quantum computing
technology.
The computational size of this problem, owing to the presence of two quantum particles in
two dimensions, stresses the capabilities of my software to the limit, and shows its merits.
Despite this, the software is able to find the initial state and time-evolve it in a reasonable
amount of time. In particular, the momentum-space eigensolver is critical for finding the
initial state (constructed from the ground and first-excited states). Fourier-transforming into
momentum space allows me to drastically reduce the size of the problem, and find the initial
state efficiently. It is then time-evolved by the staggered-leapfrog algorithm in a matter of
hours. Here again, I find that it is beneficial to work in momentum space to reduce the
problem size. However, for time evolution, much of the benefits of reduced size are offset by
the overhead of moving between momentum- and real-space. The end results is still more
accurate using momentum space for a comparable runtime.

In Chapter 5, I have shown that a single donor could be electrostatically isolated from
a large ensemble. My simulations confirm that the presence of such donors explains the
experimentally observed differential current characteristics of the device. I show how a
parallel arrangement of donors that must be tunneled through explains the shifts observed in
the Coulomb diamond pattern recorded in the experiment. Secondly, I explain how such a
device can be used to detect charge states of a nearby capacitatively coupled double quantum
dot, while keeping the charge on the detector itself constant by using a voltage compensation
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procedure. The device described here could serve as a reliable and affordable component for
quantum computing applications and quantum state detection.

The above shows how simulations, in tandem with theory, can open new avenues of
research, as well as help improve the design of real-life experimental devices. This work is
only the beginning, as with new hardware advances and further development, there is a huge
potential to use the techniques described here for further research. For example, the next step
for improved qubit control would be the inclusion of realistic noise by using the density matrix
formalism with Lindblad operators- the numerical software will be invaluable for such tasks.
For the SAW-based Root-of-SWAP gate, the next step would also include realistic noise, for
which numerical simulations are practically necessary. Then the simulation outcome would
be directly comparable to experimental results, as I could model both a specific device and
noise channels present in it. Other more ambitious goals and possibilities are described in
the “Further Work” section in Chapter 7.





Chapter 7

Further work and preliminary results

The following further work that aims to build on and expand upon the research completed in
this thesis is currently planned, or in progress already. I describe the planned development
of our GPU-accelerated simulation software, as well as planned research projects where it
would be applicable. I aim to complete the goals laid out here over the course of the next
year.

I Further simulation software development

We continue to improve our GPU-accelerated simulation software, as well as qualitatively
extend its capabilities. While most of the simulations performed for the work presented
here were done in the C++ version of the software, we have recently rewritten it in Python,
as it makes it easier to manage. Development of new features is faster in Python, and it
allows us to avoid issues with explicit memory management and garbage collection. While
Python is generally slower and less efficient than C++, we’ve concluded that because the
most computationally intensive part of the program, the CUDA kernel, is still written in C++,
the slowdown on the main program is a price worth paying. It indeed turns out that while the
initial setup steps of the simulation take slightly longer now, this does not noticeably extend
the total simulation time if it is complex enough. We continue to fine-tune the software, and
have plans to add many features that will open up possibilities for new research.

I.I Spin solver

A full spin solver that not only accounts for the spin of each particle, but also implements
general spin-spin and spin-field interaction via the Pauli or Dirac equations will be imple-
mented. With the ability to simulate an arbitrary number of particles possessing spin (up to
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computational restrictions) will expand our options dramatically. While quantum solvers
which treat each spin as a two-level system are readily available (for example QuTiP [181]),
they do not simulate the spatial dimension, and do not take advantage of GPU acceleration.
Here, we want to distinguish our work by focusing specifically on projects where the spatial
dynamics is critical. Some potential applications to research are described below in Sec. II.
As most immediate use cases would be non-relativistic, for example spins in an ion trap or
embedded in a semiconductor, implementing the Pauli equation is the obvious choice:[

1
2m

(
σ⃗ ·
(

p⃗−qA⃗
))2

+qφ

]
|ψ⟩= ih̄

∂

∂ t
|ψ⟩ . (7.1)

Here σ⃗ = (σx,σy,σz) is a vector of Pauli matrices, p⃗ is the momentum operator, A⃗ is
the magnetic vector potential, q is the particle electric charge and φ is the scalar electric
potential.

I.II Density solver with decoherence

To study open quantum systems that interact with their environment and undergo decoher-
ence, the simulation of the full density matrix is needed, as described in Ch. 2 Sec. III. While
extending from simulating a quantum state vector |ψ⟩ to a full matrix ρ would require more
memory and be more computationally expensive, potentially up to a factor N2, where N is
the size of |ψ⟩, simulating at least two particles in a reasonable number of spatial points
would still be possible with more advanced hardware, which we will have access to. The
von Neumann equation will be simulated, allowing us to use various Lindblad operators to
express the noise or decoherence a qubit experiences. This will make our simulations even
more experimentally realistic, making our results directly comparable to experiments, given
that noise is described correctly. We plan to use this advancement to simulate SAW-assisted
single electron transport in collaboration with Christopher Bäuerle’s group [217]. This
would help them diagnose the source of their errors, identifying what to focus on to achieve a
better device or experiment design. These experimental advances could elevate SAW-driven
quantum computing to the next level, allowing for experimental simulations of two-qubit
operations, such as the Root-of-SWAP described in Ch. 4, and open up new avenues of
research and opportunities for collaboration.

We have already implemented a prototype of the above, which, while not optimal, is able
to simulate a simple one-particle quantum system and show how it reacts to noise channels.
Here, I present some results of proof-of-concept simulations of a single particle trapped in a
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Fig. 7.1 Evolution of a superposition state in a DQD without decoherence. The state can
be seen localised on the right side of the well at t = 0, and then proceeds to coherently
oscillate as predicted by unitary evolution. As there are no non-unitary processes present,
this oscillation repeats forever.

double quantum well.

Let us initialise the quantum state in a superposition of the ground and first excited
eigenstates:

|ψ⟩= 1√
2
(|0⟩+ |1⟩). (7.2)

This way, we will be able to observe evolution in time, as well as quantum coherence.
Evolving this initial state for a number of periods yields results presented in Fig. 7.1. It can
be seen that the superposition state oscillates from left to right as expected from the relative
phase accumulation between the different energy eigenstates. This result should be used as
reference to compare with figures that include various noise channels.

Firstly, let us introduce a relaxation mechanism - the particle can emit a quantum of energy
to the environment and relax to a lower energy state. The dissipation operator associated
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Fig. 7.2 Evolution of a superposition state with dissipation present. The initial state gradually
dissipates energy, evolving towards the ground state in time.

with this process is simply proportional to the annihilation operator a, as per Eq. 7.3. The
characteristic timescale for this process is called T1.

Ld =
1√
T1

a (7.3)

However, Ld in Eq. 7.3 is expressed in an energy basis, and my simulations are conducted
in position basis on a discrete lattice. Therefore, the operator has to be transformed into
position basis - a matrix V of energy eigenvectors in position basis serves as a unitary
transformation between the bases:

LX
d =V LE

d V †, (7.4)

where LX
d is the position representation of the operator and LE

d is the energy representation.
The effects of including the dissipation operator are presented in Fig. 7.2.
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Fig. 7.3 Evolution of a superposition state with dephasing present. Unlike in the dissipation
case, no energy is lost, but owing to loss of coherence between the two energy eigenstates,
the state is gradually washed out, and the coherent oscillation is lost. While initially we are
able to predict whether the particle is on the left or right side, this information is gradually
lost, and the position measurement results become completely random.

Secondly, I will show the effects of a dephasing operator, which represents the mechanism
of preserving the energy of the system, but losing phase coherence between different energy
eigenstates. This operator, Lph, is proportional to the Hamiltonian:

Lph =
1√

T2h̄ω
H, (7.5)

where T2 is the characteristic dephasing time, and ω is the harmonic oscillator frequency
of our potential. The results are presented in Fig. 7.3

Finally, I investigate the effects of a thermal excitation operator Lth, which represents a
mechanism of the particle randomly absorbing an energy quantum from the environment
and being promoted to a higher energy state. This operator is proportional to the creation
operator a†:
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Fig. 7.4 Evolution of a superposition state with dissipation and excitation present. The com-
peting processes of emission and absorption move the state towards a thermal equilibrium.

Lth =
1√
T1

a†. (7.6)

Generally, the form of this operator would be more complicated and depend on the
temperature difference between the qubit and the environment, however this simple model
is sufficient for the proof of principle. Together with the dissipation operator defined in Eq.
7.3, the quantum state will move towards an equilibrium thermal state, and any quantum
coherence will be destroyed in the process. The example results are presented in Fig. 7.4.

This initial model, while simple, is still able to illustrate how noise channels lead to loss
of quantum information - decoherence. While each of the noise mechanisms investigated here
has its own signature, it can be seen that they all cause unwanted, irreversible disturbance
to the quantum state. Noise like this is a major source of errors in quantum computing, and
learning how to reduce or negate it is key to improving quantum computing performance in
the future.
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Further development of this feature of the software should be aimed at simulating noise
in a two-particle system.GPU-acceleration can make these calculations feasible. A major
hurdle making this calculation difficult is associated with the need to constantly recalculate
the annihilation and creation operators a,a† that define the dissipation and excitation noise
channels as modelled in Eqs. 7.3, 7.6. As per Eq. 7.4, the position representation of these
operators requires the knowledge of energy eigenvectors, which will constantly change in
a time-dependent potential, which is the case I am ultimately most interested in. Fully
eigensolving the Hamiltonian at every time step is not feasible here. A potential solution that
will be explored is iteration - as the potential is expected to not change drastically between
time steps, an algorithm that approximates a,a† based on previous values and changes in the
Hamiltonian seems to be promising.

II Planned research

II.I Quantum Newton’s cradle

Being able to simulate more than two particles with spin allows for interesting investigation
of how the Pauli exclusion principle manifests itself as a repulsive force. This work would
look at a collision of three or four spin-1

2 particles arranged in a line, where the left- or
rightmost one has some initial velocity. Within one spatial dimension, this setup is similar
to the classical Newton’s cradle toy, where a ball bearing collides and transfers momentum
through a chain of identical ball bearings. The dynamics of the quantum version will be
compared with the classical one. The dependence of the outcome on the initial spin state
will be investigated - it is assumed that the behaviour would be similar to the Newton’s
cradle if all the particles are initialised in the same spin eigenstate owing to Pauli exclusion
principle acting like effective contact repulsion. However, when particles are not all in
the same spin state, and are perhaps even in superpositions of spin eigenstates, rich and
interesting dynamics not illustrated before are expected to emerge. The ability to simulate the
spatial dimension of this problem in at least dozens of points is predicted to yield interesting
behaviour as the particles are brought close to “collide”. At the very least, this research
would be an enlightening illustration on how the exclusion principle influences dynamics
when spatial position is effectively continuous.

II.II Simulating qubits controlled by geometric pulse design

The theory and techniques for controlling a qubit with a pulse sequence that accounts
explicitly for rise time described in Chapter 3 are compared with somewhat similar work
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done by Edwin Barnes’ (not to be confused with Crispin Barnes) group [36]. Their control
pulses are designed based on geometric curves in the phase space of the pulse. They claim to
be able to eliminate noise to second order. While this method doesn’t take the equipment rise
time into account explicitly, it claims to suffer less from it as it’s not attempting to generate
square pulses. We think that there are advantages and disadvantages to both methods, and
instead of trying to directly compare them, we want to use this opportunity to collaborate.
We plan to use our software to simulate the geometrically designed pulses [62, 245, 20]
performing single- and two-qubit operations with realistic noise implemented, and ascertain
their advantage over simpler control methods. As we will be able to include both the spatial
dynamics of the qubits, as well as general decoherence mechanisms using the density matrix
formalism, we are in a position to show how advantageous this pulse design methodology
really is.

II.III Quantum thermodynamics

Quantum thermodynamics is a rapidly developing area of research that’s studying the rela-
tionship between classical thermodynamics with quantum properties such as superposition,
entanglement and non-commutation. It deals with issues such as heat exchange, interactions
with heat baths, equilibrium and non-equilibrium in a quantum setting. The study of open
quantum systems, such as with qubit decoherence, falls in the scope of quantum thermody-
namics. This project looks at non-commutation of conserved quantities, and how is impacts
thermalisation specifically.
In quantum thermodynamics, a small system can exchange some general conserved quantities,
such as particles, heat, spin, etc, with a large heat bath, sometimes called the environment
in quantum terms. The system of interest is predicted to thermalise (reach equilibrium with
the environment) to a canonical (C) or grand canonical (GC) ensemble, depending on the
conserved quantities [136]:

ρC = e−βHS
/ZS

C, (7.7)

where C stands for canonical, β = 1/T is the inverse temperature of the bath, HS is the
Hamiltonian of the system of interest and ZS

C is the system’s partition function that normalizes
the quantum state (ZS

C = Tr(e−βHS
)). For simplicity, we set Boltzmann’s constant to one. If

the system exchanges not only heat, but also particles with the bath, it will be best described
by the grand canonical ensemble, which is achieved simply by replacing HS with HS −µN
to account for the energy of exchanging the particles, where µ is a chemical potential and N
the number of particles.
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The operators that represent these conserved quantities (e.g. N) are generally assumed
to commute in the derivations of these states, which is not the case when they are quantum.
For example, if the conserved “charges” in question are components of spin σα , none of
them commute with each other. A so called Non-Abelian thermal state (NATS) [241] was
proposed to take the above into account. It is defined as such:

ρNAT S = e−β (HS−∑α µα QS
α )/ZS

NAT S, (7.8)

where α’s index the generalised charges Qα and their chemical potentials µα . The above
would reduce to the GC ensemble if we set Qx,Qy = 0 and Qz ̸= 0.

I am able to use our GPU-accelerated software to efficiently simulate many-particle
quantum systems expected to be described by the NATS. I have already performed some
initial work that is using simulations to illustrate how the NATS is distinguished from other
thermodynamical predictions. In this work, a spin chain with a nearest-neighbour Heisenberg
interaction is used. This is because this system is well-studied and obviously possesses
non-commuting charges (σα ’s). We divide the spin chain into a smaller “system” with size n
(n = 2 throughout this work), and a larger “bath” with N spins. The total Hamiltonian of the
system then reads:

Htot = J

(
2N−1

∑
j=1

σ⃗
j · σ⃗ j+1 +

2N−2

∑
j=1

σ⃗
j · σ⃗ j+2

)
, (7.9)

where J is the coupling strength, σ⃗ j is the Pauli vector for site j, and I have set n= 2. Note that
closed boundary conditions are used - this is mainly due to collaboration with experimentalists
that use trapped ions [79, 116], so that these results can be directly comparable.

This Hamiltonian is also known to be non-integrable, which is thought to aid thermalisa-
tion - it will have an easier time evolving into the thermal state ρC/NAT S from an initial state,
given certain requirements are satisfied [241]. Namely, the system should be initialised in an
approximate microcanonical subspace (AMC) [242].
As the total spin charges σα do not commute with the Hamiltonian, the system cannot be
in an eigenstate of energy E and spin components σα simultaneously. However, a sub-
space can exist where the expectation values ⟨H⟩= E,⟨σα⟩= Sα are at least approximately
well-defined, that is, their standard deviation grows at most as

√
N with the total system

size N. That means that measuring a total spin σα will have a large probability of yielding
an outcome close to Sα Secondly, the initial state should not be an energy eigenstate (for
example, all spins aligned), as it would not evolve in time. In particular, product states of
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single particle spin eigenstates in different directions are in such an AMC.

The goal of this research is to find initial states that best show the difference between
NATS and GC predictions. The expectation is that in the presence of many non-commuting
charges, the NATS prediction would be better than GC.

To find the required initial state, it is necessary to be able to calculate β and µα as in Eq.
7.8. These are properties of a given state under the Hamiltonian, and so each state will have
different values. While it is possible to calculate them analytically for low µα and β , these
results are not the directly useful, since the regime on the opposite end is the most interesting -
high µα and β . This is because low µα means that the non-commutative aspect of the charges
is weak, whereas we expect the NATS to be a better description when non-commutation is
significant. Likewise, low β means that the temperature is high, which will quickly move the
initial state towards the maximally mixed state, and mask the differences between the NATS
and GC predictions. However, the analytical results hint that states with a low ⟨E⟩ will have
a high β - intuitively we might associate low energy with low temperature. Similarly, states
with high total spin expected value ⟨σα⟩ should have a high Sα (in the same direction) - a
large expectation value of spin means that the “cost” of exchanging it is also high.

A general way of calculating β and µα numerically for any initial state is found based on
[6, 3]. We need to minimise the following function F by varying β and µα ’s :

F = logTr
[

exp
(
−β

(
H tot −EI+∑

α

(σα −SαI)
))]

. (7.10)

It is worth noting that β and µα are in principle different quantites for the NATS, GC and
C predictions. I will therefore subscript them, e.g. βNAT S, for clarity moving forwards. As
the only state-related inputs to the above Eq. 7.10 are the energy and spin expectation values,
it is evident that these are the important properties of the initial state to focus on.
Using this method, I’ve numerically investigated various initial states with 4, 6, 8, 10 and
12 qubits in total. To summarise, I find that low energy states indeed result in high β , while
high E states can easily reach negative β , which signifies negative temperatures - states that
are “hotter” than infinitely high positive temperature ones. This is undesirable as mentioned
before - we need to look at lower energy states (however, energy eigenstates are not suitable
candidates, as they will not thermalise). Meanwhile, µα ’s are directly proportional to their
respective Sα ’s.
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I then attempt to construct a good initial state based on these observations :

• As I want to maximise µα ’s, high Sα ’s are desirable.

• As I care about the non-commutation between all three charges, I want the µα ’s to be
of similar magnitude to preserve symmetry.

• As I want the inverse temperature β to be high, I want the expected energy E of my
state to be as low as possible.

I therefore build the product state from single qubit spin eigenstates |α±⟩, meaning a
spin eigenstate in α = x,y,z direction with value ±1. I want all the spins for a given direction
α to point in the same direction to maximise Sα , arbitrarily picking the positive eigenvalue
ones (the results would be the same if we flip it to the negative one). To keep the µα ’s to be
of similar magnitude, I want the same number of every direction spin state, if possible for a
given number of qubits (this is only realisable exactly for N divisible by 3). Finally, I want to
pick a permutation of the above that minimises the total expected energy. By numerically
checking different permutation, the following state emerges:

|ψ⟩= |x+⟩ |y+⟩ |z+⟩ ... |x+⟩ |y+⟩ |z+⟩ . (7.11)

We can check that it satisfies the AMC conditions by checking the scaling of spin standard
deviation. The results are presented in Fig. 7.5. It can be seen that the standard deviations of
all charges increase slower than

√
N with the total system size N, satisfying the condition for

being in an AMC.
I then compare the NATS, GC and C predictions for the thermal state using the following

strategy. We evolve the initial state unitarily for a time sufficient for thermalisation, which
scales with total system dimension 2N . We then divide the total system into a two-particle
“system of interest” and a “bath”. We calculate the relative entropy between this state and the
theoretical predictions. The quantum relative entropy between two quantum states ρ1 and ρ2

is defined as follows:

D(ρ1 || ρ2) = Trρ1(logρ1 − logρ2). (7.12)

This is averaged over choosing all possible neighboring pairs as the “system of interest’,
as well as averaged over a window of time ±5% around the value decided on above. The
results are presented in Fig. 7.6.

Indeed, it can be seen that the NATS prediction is the best for all numbers of qubits, with
GC being second-best, and C the worst. This holds true for all numbers of qubits explored
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Fig. 7.5 Spin charges standard deviation scaling with total system size N. The total spin, as
well as each direction separately, is presented. Data is fitted with an equation of the form
y = axb, with least-squares fitted parameters provided. The total spin scales exactly as

√
N,

as expected from a product state of this form. Each spin charge also scales at most as fast as√
N, satisfying the AMC condition. While the standard deviation of Sz seems to scale faster

on this plot, we conclude that it is an artefact of small number of qubits explored here, as the
chosen state is symmetric w.r.t the x/y/z axes, given that the state is not truncated, i.e. N is
divisible by 3.
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Fig. 7.6 Relative entropy comparison of the three thermodynamical predictions. For all data
points, the NATS prediction is the best one, followed by GC and C. Within the number of
qubits explored here, the gap between the predictions does not seem to be closing, although
more data would be needed to draw definitive conclusions.
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here, and within the regime explored, the gap between the predictions does not seem to be
closing. This shows that the state found in Eq. 7.11 is a good initial state to show how the
NATS is the right choice when multiple non-commuting charges are present. Within the
regime explored, this repeating 3-particle product state remains the best one for any number
of qubits, even when the total system size is not a multiple of three (in which case the state is
truncated).

I have received measurement results from a 12-qubit trapped ion chain experiment, that
implement an effective Heisenberg Hamiltonian and measure the spins repeatedly to generate
data as per Fig. 7.6. The data seems to provide experimental confirmation of the NATS
theory laid out here. It should be noted that the experiment uses a different interaction
model - all-to-all coupling between qubits is present, with strength proportional to inverse
distance between them. Additionally, only the x-dimension interaction is present. However,
the latter can be overcome by using Trotterisation steps with basis rotations in-between, so
that all directions are coupled equally on average. With small enough time step for this
Trotterisation, my simulations shows that the experimental setup is qualitatively equivalent
to the next-nearest-neighbour Heisenberg Hamiltonian described here. The same initial state
found in this work is also the best to use in this experiment. The comparison of relative
entropy distance between the exact theory and experimental measurement, NATS, GC and
C predictions is presented in Table 7.1. Here, the relative entropy was calculated for all 11
neighbour pairs that each serve as the (S)ystem to the remaining 10 ions forming a (B)ath,
and then averaged over all pairs (there were no significant outliers among the pairs). The data
shows that the NATS is the best prediction out of the three by far, reaching a relative entropy
w.r.t. the exact theory of 0.151 nats. The experiment’s relative entropy w.r.t. the exact theory,
and the Trotterised version (as the experiment was Trotterised) show a value that is very close
to the NATS one. The small increase is mostly attributed to noise and measurement errors.
The experimental initial state was also immediately measured and compared to theory for
benchmarking, yielding a low entropy difference of 0.097 nats. The experiment is also closest
to the NATS compared to GC and C predictions. Overall, I conclude that the experiment was
performed well, with only small errors, and that the NATS gives a prediction that is close to
reality, and gives a very notable improvement over the GC and C predictions.

Further work will be done on the NATS, possibly looking for different classes of good
initial states. I am also planning to explore the regime of couplings other than XXX (where
spin-spin interactions have equal strength on all axes). Changing these coupling strengths
to be unequal will break the symmetry of the Hamiltonian under U(2) rotation, possibly
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Table 7.1 Relative entropy D comparison
Comparison Average Relative entropy D (nats)
Exact theory/NATS 0.151
Exact theory/GC 0.337
Exact theory/C 0.451
Experiment final state/exact theory 0.184
Experiment final state/Trotterized theory 0.148
Experiment final state/NATS 0.251
Experiment final state/GC 0.385
Experiment final state/C 0.403

furthering the difference between the NATS and GC predictions. This is because under the
XXX coupling, a quantum state could be rotated to have the total spin S pointing in the
z-direction - doing this would make the NATS and GC equal, as only µz for the NATS would
be non-zero. However, under XYZ coupling, this is no longer the case, and all three µ’s
are required to describe the quantum state. There is also evidence that couplings other than
XXX would change non-commutation properties of the charges [241]. I will explore all these
exciting avenues in further research.





Part II
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The second auxiliary part of this thesis shows other work done during my PhD. This part
is presented as separate as to not detract from the focus of the main work on GPU-accelerated
simulations, however, it is still closely related to quantum information processing and realistic
quantum devices. The work on quantum metrology in Ch. 8 below proves how the negativity
of Kirkwood-Dirac distribution describing a quantum system is a sign of non-classical phe-
nomena and can be used to improve experimental measurements. Our ability to deliver new
quantum-mechanical improvements to technologies relies on a better understanding of the
foundation of quantum theory: When is a phenomenon truly nonclassical? We take noncom-
mutation as our notion of nonclassicality and we quantify this nonclassicality with negativity:
Quantum states can be represented by quasiprobability distributions, extensions of classical
probability distributions. Whereas probabilities are real and nonnegative, quasiprobabilities
can assume negative and nonreal values. Quasiprobabilities’ negativity stems from the impos-
sibility of representing quantum states with joint probability distributions [149, 206, 71]. The
distribution we use, an extension of the Kirkwood-Dirac distribution [123, 50, 243], signals
nonclassical noncommutation through the presence of negative or nonreal quasiprobabilities.





Chapter 8

Postselected metrology using Quantum
Fisher information

I Introduction

One field advanced by quantum mechanics is metrology, which concerns the statistical
estimation of unknown physical parameters. Quantum metrology relies on quantum phe-
nomena to improve estimations beyond classical bounds [88]. A famous example exploits
entanglement [87, 132, 48]. Consider using N separable and distinguishable probe states to
evaluate identical systems in parallel. The best estimator’s error will scale as N−1/2. If the
probes are entangled, the error scaling improves to N−1 [151]. As Bell’s theorem rules out
classical (local realist) explanations of entanglement, the improvement is genuinely quantum.

A central quantity in parameter estimation is the Fisher information, I (θ). The Fisher
information quantifies the average information learned about an unknown parameter θ from
an experiment [? 27, 42]. I (θ) lower-bounds the variance of an unbiased estimator θe via the
Cramér-Rao inequality: Var(θe)≥ 1/I (θ) [43, 183]. A common metrological task concerns
optimally estimating a parameter that characterizes a physical process. The experimental
input and the final measurement are optimized to maximize the Fisher information and to
minimize the estimator’s error.

Classical parameter estimation can benefit from postselecting the output data before
postprocessing. Postselection can raise the Fisher information per final measurement or
postprocessing event (Fig. 8.1). Postselection can also raise the rate of information per final
measurement in a quantum setting. But classical postselection is intuitive, whereas an intense
discussion surrounds postselected quantum experiments [4, 139, 223, 5, 58, 227, 69, 179, 180,
10, 12, 194, 11, 39]. The ontological nature of postselected quantum states, and the extent to
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which they exhibit nonclassical behavior, is subject to an ongoing debate. Particular interest
has been aimed at pre- and postselected averages of observables. These weak values can
lie outside an observable’s eigenspectrum when measured via a weak coupling to a pointer
particle [4, 61]. Such values offer metrological advantages in estimations of weak-coupling
strengths [223, 59, 168, 179, 115, 101, 134, 239].

p
1− p

F ps (θ )
Γθ

Fig. 8.1 Classical experiment with postselection. A nonoptimal input device initializes
a particle in one of two states, with probabilities p and 1− p, respectively. The particle
undergoes a transformation Γθ set by an unknown parameter θ . Only the part of the
transformation that acts on particles in the lower path depends on θ . If the final measurement
is expensive, the particles in the upper path should be discarded: they possess no information
about θ .

In this article, we go beyond this restrictive setting and ask, can postselection provide a
nonclassical advantage in general quantum parameter-estimation experiments? We conclude
that it can. We study metrology experiments for estimating an unknown transformation
parameter whose final measurement or postprocessing incurs an experimental cost [144, 143].
Postselection allows the experiment to incur that cost only when the postselected measure-
ment’s result reveals that the final measurement’s Fisher information will be sufficiently
large. We express the Fisher information in terms of a quasiprobability distribution. Quantum
negativity in this distribution enables postselection to increase the Fisher information above
the values available from standard input-and-measurement-optimized experiments. Such
an anomalous Fisher information can improve the rate of information gain to experimental
cost, offering a genuine quantum advantage in metrology. We show that, within a commut-
ing theory, a theory in which observables commute classically, postselection can improve
information-cost rates no more than a strategy that uses an optimal input and final measure-
ment can. We thus conclude that experiments that generate anomalous Fisher-information
values require noncommutativity.
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II Results

II.I Postselected quantum Fisher information

As aforementioned, postselection can raise the Fisher information per final measurement.
Figure 8.1 outlines a classical experiment with such an information enhancement. Below, we
show how postselection affects the Fisher information in a quantum setting.

Consider an experiment with outcomes i and associated probabilities pi(θ), which depend
on some unknown parameter θ . The Fisher information about θ is [42]

I (θ) = ∑
i

pi(θ)[∂θ ln(pi(θ))]
2 = ∑

i

1
pi(θ)

[∂θ pi(θ)]
2. (8.1)

Repeating the experiment N ≫ 1 times provides, on average, an amount NI (θ) of informa-
tion about θ . The estimator’s variance is bounded by Var(θe)≥ 1/[NI (θ)].

Below, we define and compare two types of metrological procedures. In both scenarios,
we wish to estimate an unknown parameter θ that governs a physical transformation.

Optimized prepare-measure experiment: An input system undergoes the partially
unknown transformation, after which the system is measured. Both the input system and the
measurement are chosen to provide the largest possible Fisher information.

Postselected prepare-measure experiment: An input system undergoes, first, the par-
tially unknown transformation and, second, a postselection measurement. Conditioned on the
postselection’s yielding the desired outcome, the system undergoes an information-optimized
final measurement.

In quantum parameter estimation, a quantum state is measured to reveal information
about an unknown parameter encoded in the state. We now compare, in this quantum setting,
the Fisher-information values generated from the two metrological procedures described
above. Consider a quantum experiment that outputs a state ρ̂θ = Û(θ)ρ̂0Û†(θ), where ρ̂0

is the input state and Û(θ) represents a unitary evolution set by θ . The quantum Fisher
information is defined as the Fisher information maximized over all possible generalized
measurements [27, 82, 174, 175, 88]:

IQ(θ |ρ̂θ ) = Tr
[
ρ̂θ Λ̂

2
ρ̂θ

]
. (8.2)

Λ̂ρ̂θ
is the symmetric logarithmic derivative, implicitly defined by ∂θ ρ̂θ = 1

2(Λ̂ρ̂θ
ρ̂θ + ρ̂θ Λ̂ρ̂θ

)

[? ].



138 Postselected metrology using Quantum Fisher information

If ρ̂θ is pure, such that ρ̂θ = |Ψθ ⟩⟨Ψθ |, the quantum Fisher information can be written
as [168, 167]

IQ(θ |ρ̂θ ) = 4⟨Ψ̇θ |Ψ̇θ ⟩−4| ⟨Ψ̇θ |Ψθ ⟩ |2, (8.3)

where |Ψ̇θ ⟩ ≡ ∂θ |Ψθ ⟩.
We assume that the evolution can be represented in accordance with Stone’s theorem

[212], by Û(θ)≡ e−iÂθ , where Â is a Hermitian operator. We assume that Â is not totally
degenerate: If all the Â eigenvalues were identical, Û(θ) would not imprint θ onto the state
in a relative phase. For a pure state, the quantum Fisher information equals IQ(θ |ρ̂θ ) =

4Var(Â)ρ̂0 [88]. Maximizing Eq. 8.1 over all measurements gives IQ(θ |ρ̂θ ). Similarly,
IQ(θ |ρ̂θ ) can be maximized over all input states. For a given unitary Û(θ) = e−iÂθ , the
maximum quantum Fisher information is

maxρ̂0

{
IQ(θ |ρ̂θ )

}
= 4maxρ̂0

{
Var(Â)ρ̂0

}
= (∆a)2, (8.4)

where ∆a is the difference between the maximum and minimum eigenvalues of Â [88].1

To summarize, in an optimized quantum prepare-measure experiment, the quantum Fisher
information is (∆a)2.

ρ̂0 Û(θ )
F̂

1̂− F̂

ρ̂θ
ps

ρ̂θ
ps

Fig. 8.2 Preparation of postselected quantum state. First, an input quantum state ρ̂0

undergoes a unitary transformation Û(θ) = e−iθ Â: ρ̂0 → ρ̂θ . Second, the quantum state is
subject to a projective postselective measurement {F̂ , 1̂− F̂}. The postselection is such that
if the outcome related to the operator F̂ happens, then the quantum state is not destroyed.
The experiment outputs renormalized states ρ̂

ps
θ

= F̂ ρ̂θ F̂/Tr(F̂ ρ̂θ ).

We now find an expression for the quantum Fisher information in a postselected prepare-
measure experiment. A projective postselection occurs after Û(θ) but before the final
measurement. Figure 8.2 shows such a quantum circuit. The renormalized quantum state that

passes the postselection is |Ψps
θ
⟩ ≡ |ψps

θ
⟩/
√

pps
θ

, where we have defined an unnormalized

1 The information-optimal input state is a pure state in an equal superposition of one eigenvector associated
with the smallest eigenvalue and one associated with the largest.
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state |ψps
θ
⟩ ≡ F̂ |Ψθ ⟩ and the postselection probability pps

θ
≡ Tr(F̂ ρ̂θ ). As before, ρ̂θ =

Û(θ)ρ̂0Û†(θ). F̂ = ∑ f∈F ps | f ⟩⟨ f | is the postselecting projection operator, and F ps is a
set of orthonormal basis states allowed by the postselection. Finally, the postselected state
undergoes an information-optimal measurement.

When |Ψps
θ
⟩ ≡ |ψps

θ
⟩/
√

pps
θ

is substituted into Eq. 8.3, the derivatives of pps
θ

cancel, such
that

IQ(θ |Ψps
θ
) = 4⟨ψ̇ps

θ
|ψ̇ps

θ
⟩ 1

pps
θ

−4| ⟨ψ̇ps
θ
|ψps

θ
⟩ |2 1

(pps
θ
)2 . (8.5)

Equation 8.13 gives the quantum Fisher information available from a quantum state after
its postselection. Unsurprisingly, IQ(θ |Ψps

θ
) can exceed IQ(θ |ρ̂θ ), since pps

θ
≤ 1. Also

classical systems can achieve such postselected information amplification (see Fig. 8.1).
Unlike in the classical case, however, IQ(θ |Ψps

θ
) can also exceed the Fisher information of

an optimized prepare-measure experiment, (∆a)2. We show how below.

II.II Quasiprobability representation

In classical mechanics, our knowledge of a point particle can be described by a probability
distribution for the particle’s position, x⃗, and momentum, k⃗: p(⃗x,⃗k). In quantum mechanics,
position and momentum do not commute, and a state cannot generally be represented by a
joint probability distribution over observables’ eigenvalues. A quantum state can, however, be
represented by a quasiprobability distribution. Many classes of quasiprobability distributions
exist. The most famous is the Wigner function [236, 238, 38]. Such a distribution satisfies
some, but not all, of Kolmogorov’s axioms for probability distributions [163]: the entries
sum to unity, and marginalizing over the eigenvalues of every observable except one yields
a probability distribution over the remaining observable’s eigenvalues. A quasiprobability
distribution can, however, have negative or nonreal values. Such values signal nonclassical
physics in, for example, quantum computing and quantum chaos [206, 68, 129, 110, 57, 46,
47, 240, 243, 99, 90].

A cousin of the Wigner function is the Kirkwood-Dirac quasiprobability distribution
[123, 50, 243]. This distribution, which has been referred to by several names across
the literature, resembles the Wigner function for continuous systems. Unlike the Wigner
functions, however, the Kirkwood-Dirac distribution is well-defined for discrete systems,
even qubits. The Kirkwood-Dirac distribution has been used in the study of weak-value
amplification [210, 114, 107, 57, 176, 243], information scrambling [243, 99, 90, 160] and
direct measurements of quantum wavefunctions [148, 147, 17, 221]. Moreover, negative and
nonreal values of the distribution have been linked to nonclassical phenomena [57, 243, 99,
90]. We cast the quantum Fisher information for a postselected prepare-measure experiment
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in terms of a doubly extended2 Kirkwood-Dirac quasiprobability distribution [243]. We
employ this distribution due to its usefulness as a mathematical tool: This distribution
enables the proof that, in the presence of noncommuting observables, postselection can give
a metrological protocol a nonclassical advantage.

Our distribution is defined in terms of eigenbases of Â and F̂ . Other quasiprobability
distributions are defined in terms of bases independent of the experiment. For example, the
Wigner function is often defined in the bases of the quadrature of the electric field or the
position and momentum bases. However, basis-independent distributions can be problematic
in the hunt for nonclassicality [206, 46]. Careful application, here, of the extended Kirkwood-
Dirac distribution ties its nonclassical values to the operational specifics of the experiment.

To begin, we define the quasiprobability distribution of an arbitrary quantum state ρ̂:

qρ̂

a,a′, f ≡ ⟨ f |a⟩⟨a| ρ̂ |a′⟩⟨a′| f ⟩ . (8.6)

Here, {| f ⟩}, {|a⟩} and {|a′⟩} are bases for the Hilbert space on which ρ̂ is defined. We can
expand ρ̂ [148, 147] as3

ρ̂ = ∑
a,a′, f

|a⟩⟨ f |
⟨ f |a⟩

qρ̂

a,a′, f . (8.7)

Let {|a⟩} = {|a′⟩} denote an eigenbasis of Â, and let {| f ⟩} denote an eigenbasis of F̂ .
The reason for introducing a doubly extended distribution, instead of the standard Kirkwood-
Dirac distribution qρ̂

a, f ≡ ⟨ f |a⟩⟨a| ρ̂ | f ⟩, is that IQ(θ |Ψps
θ
) can be expressed most concisely,

naturally, and physically meaningfully in terms of qρ̂θ

a,a′, f . Later, we shall see how the

nonclassical entries in qρ̂

a,a′, f and qρ̂

a, f are related. We now express the postselected quantum

Fisher information (Eq. 8.13) in terms of the quasiprobability values qρ̂θ

a,a′, f (Supp. Inf. 1).

IQ(θ |Ψps
θ
) = 4 ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

aa′−4
∣∣∣ ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

a
∣∣∣2, (8.8)

2The modifier “doubly extended” comes from the experiment in which one would measure the distribution:
One would prepare ρ̂ , sequentially measure two observables weakly, and measure one observable strongly. The
number of weak measurements equals the degree of the extension [243].

3If any ⟨ f |a⟩= 0, we perturb one of the bases infinitesimally while preserving its orthonormality.
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where a and a′ denote the eigenvalues associated with |a⟩ and |a′⟩, respectively.4 Equation
8.14 contains a conditional quasiprobability distribution, qρ̂θ

a,a′, f /pps
θ

. If Â commutes with F̂ ,

as they do classically, then they share an eigenbasis for which qρ̂θ

a,a′, f /pps
θ
∈ [0, 1], and the

postselected quantum Fisher information is bounded as IQ(θ |Ψps
θ
)≤ (∆a)2:

Theorem 1 In a classically commuting theory, no postselected prepare-measure experiment
can generate more Fisher information than the optimized prepare-measure experiment.

Proof of Theorem 1.—We upper-bound the right-hand side of Eq. 8.14. First, if {|a⟩}=
{|a′⟩} = {| f ⟩} is an eigenbasis shared by Â and F̂ , Eq. 8.6 simplifies to a probability
distribution:

qρ̂θ

a,a′, f = ⟨a| ρ̂θ |a′⟩ [[[| f ⟩= |a⟩]]][[[|a′⟩= | f ⟩]]] ∈ [0, 1], (8.9)

where [[[X ]]] is the Iverson bracket, which equals 1 if X is true and equals 0 otherwise. Second,
summing qρ̂θ

a,a′, f /pps
θ

over f ∈ F ps, we find

∑
f∈F ps

qρ̂θ

a,a′, f /pps
θ
= ⟨a| ρ̂θ |a′⟩⟨a′| F̂ |a⟩/pps

θ
. (8.10)

By the eigenbasis shared by Â and F̂ , the sum simplifies to ⟨a| ρ̂θ F̂ |a′⟩ [[[|a′⟩= |a⟩]]]/pps
θ

. We
can thus rewrite Eq. 8.14:

IQ(θ |Ψps
θ
) =4 ∑

a,a′

⟨a| ρ̂θ F̂ |a′⟩ [[[|a′⟩= |a⟩]]]
pps

θ

aa′

−4
∣∣∣∑

a,a′

⟨a| ρ̂θ F̂ |a′⟩ [[[|a′⟩= |a⟩]]]
pps

θ

a
∣∣∣2

=4∑
a

qaa2 −4
(
∑
a

qaa
)2

, (8.11)

where we have defined the probabilities qa ≡ ⟨a| ρ̂θ F̂ |a⟩/pps
θ
= ∑ f∈F ps ⟨a| ρ̂θ |a⟩ [[[| f ⟩ =

|a⟩]]]/pps
θ

.
Apart from the multiplicative factor of 4, Eq. 8.11 is in the form of a variance with respect

to the observable’s eigenvalues a. Thus, Eq. 8.11 is maximized when qamin = qamax =
1
2 :

max
{qa}

{IQ(θ |Ψps
θ
)}= (∆a)2. (8.12)

4We have suppressed degeneracy parameters γ in our notation for the states, e.g., |a,γ⟩ ≡ |a⟩.
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This Fisher-information bound must be independent of our choice of eigenbases of Â and
F̂ . In summary, if Â commutes with F̂ , then all qρ̂θ

a,a′, f /pps
θ

can be expressed as real and
nonnegative, and IQ(θ |Ψps

θ
)≤ (∆a)2. �

In contrast, if the quasiprobability distribution contains negative values, the postselected
quantum Fisher information can violate the bound: IQ(θ |Ψps

θ
)> (∆a)2. In Supp. Inf. 2, we

prove a second theorem:5

Theorem 2 An anomalous postselected Fisher information implies that the quantum Fisher
information cannot decompose in terms of a nonnegative doubly extended Kirkwood-Dirac
quasiprobability distribution.

Proof: see Supplementary Note 2 for a proof.
This inability to decompose implies that Â fails to commute with F̂ . However, pairwise

noncommutation of ρ̂θ , Â and F̂ is insufficient to enable anomalous values of IQ(θ |Ψps
θ
). For

example, noncommutation could lead to a nonreal Kirkwood-Dirac distribution without any
negative real components. Such a distribution cannot improve IQ(θ |Ψps

θ
) beyond classical

values. Furthermore, the presence or absence of commutation is a binary measure. In contrast,
how much postselection improves IQ(θ |Ψps

θ
) depends on how much negativity qρ̂θ

a,a′, f /pps
θ

has. We build on this observation, and propose two experiments that yield anomalous
Fisher-information values, in Supp. Infs. 3 and 4.6

As promised, we now address the relation between nonclassical entries in qρ̂

a,a′, f and

nonclassical entries in qρ̂

a, f . For pure states ρ̂ = |Ψ⟩⟨Ψ|, the doubly extended quasiprobability
distribution can be expressed time symmetrically in terms of the standard Kirkwood-Dirac
distribution [123, 50, 240, 243, 99, 90]: qρ̂

a,a′, f =
1
p f

qρ̂

a, f

(
qρ̂

a′, f

)∗, where qρ̂

a, f = ⟨ f |a⟩⟨a| ρ̂ | f ⟩

and p f ≡ |⟨ f |Ψ⟩ |2.7 Therefore, a negative qρ̂

a,a′, f implies negative or nonreal values of qρ̂

a, f .

Similarly, a negative qρ̂

a,a′, f implies a negative or nonreal weak value ⟨ f |a⟩⟨a|Ψ⟩/⟨ f |Ψ⟩
[4], which possesses interesting ontological features (see below). Thus, an anomalous
Fisher information is closely related to a negative or nonreal weak value. Had we weakly
measured the observable |a⟩⟨a| of ρ̂θ with a qubit or Gaussian pointer particle before the
postselection, and had we used a fine-grained postselection {1̂− F̂ , | f ⟩⟨ f | : f ∈ F ps}, the
weak measurement would have yielded a weak value outside the eigenspectrum of |a⟩⟨a|. It
has been shown that such an anomalous weak value proves that quantum mechanics, unlike
classical mechanics, is contextual: quantum outcome probabilities can depend on more
than a unique set of underlying physical states [205, 179, 134]. If ρ̂θ had undergone the

5The theorem’s converse is not generally true.
6 It remains an open question to investigate the relationship between Kirkwood-Dirac negativity in other

metrology protocols with noncommuting operators, e.g., [216].
7See [5, 138] for discussions about time-symmetric interpretations of quantum mechanics.
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aforementioned weak measurement, instead of the postselected prepare-measure experiment,
the weak measurement’s result would have signaled quantum contextuality. Consequently, a
counterfactual connects an anomalous Fisher information and quantum contextuality. While
counterfactuals create no problems in classical physics, they can lead to logical paradoxes
in quantum mechanics [128, 100, 169, 205]. Hence our counterfactual’s implication for the
ontological relation between an anomalous Fisher information and contextuality offers an
opportunity for future investigation.

II.III Improved metrology via postselection

In every real experiment, the preparation and final measurement have costs, which we de-
note CP and CM, respectively. For example, a particle-number detector’s dead time, the
time needed to reset after a detection, associates a temporal cost with measurements [95].
Reference [144] concerns a two-level atom in a noisy environment. Liuzzo et al. detail the
tradeoff between frequency estimation’s time and energy costs. Standard quantum-metrology
techniques, they show, do not necessarily improve metrology, if the experiment’s energy
is capped. Also, the cost of postprocessing can be incorporated into CM.8 We define the
information-cost rate as R(θ) = NI (θ)/(NCP +NCM) = I (θ)/(CP +CM). If our exper-
iment conditions the execution of the final measurement on successful postselection of a
fraction pps

θ
of the states, we include a cost of postselection, Cps. We define the postselected

experiment’s information-cost rate as Rps(θ) = N pps
θ

I ps(θ)/(NCP +NCps +N pps
θ

CM) =

pps
θ

I ps(θ)/(CP+Cps+ pps
θ

CM), where I ps(θ) is the Fisher information conditioned on suc-
cessful postselection. Generalizing the following arguments to preparation and measurement
costs that differ between the postselected and nonpostselected experiments is straightforward.

In classical experiments, postselection can improve the information-cost rate. See Fig.
8.1 for an example. But can postselection improve the information-cost rate in a classical
experiment with information-optimized inputs? Theorem 1 answered this question in the
negative. I ps(θ)≤ max{I (θ)} in every classical experiment. The maximization is over
all physically accessible inputs and final measurements. A direct implication is that Rps(θ)≤
max{R(θ)}.

In quantum mechanics, IQ(θ |Ψps
θ
) can exceed maxρ̂0{IQ(θ |ρ̂θ )}= (∆a)2. This result

would be impossible classically. Anomalous Fisher-information values require quantum
negativity in the doubly extended Kirkwood-Dirac distribution. Consequently, even compared
to quantum experiments with optimized input states, postselection can raise information-cost

8In an experiment, these costs can be multivariate functions that reflect the resources and constraints. Such a
function could combine a detector’s dead time with the monetary cost of liquid helium and a graduate student’s
salary. However, presenting the costs in a general form benefits this platform-independent work.
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rates beyond classically possible rates: Rps(θ) > max{R(θ)}. This result generalizes the
metrological advantages observed in the measurements of weak couplings, which also require
noncommuting operators. References [109, 54, 207, 29, 208, 65, 108, 154, 150, 156] concern
metrology that involves weak measurements of the following form. The primary system S and
the pointer P begin in a pure product state |ΨS⟩⊗|ΨP⟩; the coupling Hamiltonian is a product
Ĥ = ÂS ⊗ ÂP; the unknown coupling strength θ is small; and just the system is postselected.
Our results govern arbitrary input states, arbitrary Hamiltonians (that satisfy Stone’s theorem),
arbitrarily large coupling strengths θ , and arbitrary projective postselections. Our result
shows that postselection can improve quantum parameter estimation in experiments where the
final measurement’s cost outweighs the combined costs of state preparation and postselection:
CM ≫ CP +Cps. Earlier works identified that the Fisher information from nonrenormalized
trials that succeed in the postselection cannot exceed the Fisher information averaged over
all trials, including the trials in which the postselection fails [70, 40].9 In accordance with
practical metrology, not only the Fisher information, but also measurements’ experimental
costs, underlie our results.

So far, we have shown that IQ(θ |Ψps
θ
) can exceed (∆a)2. But how large can IQ(θ |Ψps

θ
)

grow? In Supp. Inf. 3, we show that, if the generator Â has M ≥ 3 not-all-identical eigen-
values, there is no upper bound on IQ(θ |Ψps

θ
). If CP and Cps are negligible compared

to CM, then there is no theoretical cap on how large Rps(θ) can grow. In general, when
IQ(θ |Ψps

θ
) → ∞, pps

θ
×IQ(θ |Ψps

θ
) < (∆a)2, such that information is lost in the events

discarded by postselection. But if Â has doubly degenerate minimum and maximum eigenval-
ues, pps

θ
×IQ(θ |Ψps

θ
) can approach (∆a)2 while IQ(θ |Ψps

θ
) approaches infinity (see Supp.

Inf. 4). In such a scenario, postselection can improve information-cost rates, as long as
Cps < (1− pps

θ
)CM—a significantly weaker requirement than CM ≫ CP +Cps.

III Discussion

From a practical perspective, our results highlight an important quantum asset for parameter-
estimation experiments with expensive final measurements. In some scenarios, the postse-
lection’s costs exceed the final measurement’s costs, as an unsuccessful postselection might
require fast feedforward to block the final measurement. But in single-particle experiments,
the postselection can be virtually free and, indeed, unavoidable: an unsuccessful postselec-

9Reference [167] considered squeezed coherent states as metrological probes in specific weak-measurement
experiments. It is shown that postselection can improve the signal-to-noise ratio, irrespectively of whether the
analysis includes the failed trials. However, this work concerned nonpostselected experiments in which only the
probe state was measured. Had it been possible to successfully measure also the target system, the advantage
would have disappeared.
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tion can destroy the particle, precluding the triggering of the final measurement’s detection
apparatus [37]. Thus, current single-particle metrology could benefit from postselected
improvements of the Fisher information. A photonic experimental test of our results is
currently under investigation.

From a fundamental perspective, our results highlight the strangeness of quantum me-
chanics as a noncommuting theory. Classically, an increase of the Fisher information via
postselection can be understood as the a posteriori selection of a better input distribution.
But it is nonintuitive that quantum mechanical postselection can enable a quantum state
to carry more Fisher information than the best possible input state could. The optimized
Cramér-Rao bound, obtained from Eq. 8.4, can be written in the form of an uncertainty
relation:

√
Var(θe)(∆a)≥ 1 [88]. Our results highlight the probabilistic possibility of vio-

lating this bound. More generally, the information-cost rate’s ability to violate a classical
bound leverages negativity, a nonclassical resource in quantum foundations, for metrological
advantage.

IV Supplementary Information

IV.I Supplementary Note 1 – Expressing the postselected quantum Fisher
information in terms of the KD distribution

As shown in the Results section, the postselected quantum Fisher information is given by

IQ(θ |Ψps
θ
) = 4⟨ψ̇ps

θ
|ψ̇ps

θ
⟩ 1

pps
θ

−4| ⟨ψ̇ps
θ
|ψps

θ
⟩ |2 1

(pps
θ
)2 , (8.13)

where nonrenormalized postselected quantum state is |ψps
θ
⟩= F̂Û(θ) |Ψ0⟩, where |Ψ0⟩⟨Ψ0| ≡

ρ̂0. pps
θ
= Tr(F̂ ρ̂θ ) is the probability of postselection.

In this supplementary note, we show that Eq. 8.13 can be expressed in terms of the
double-extended KD distribution:

IQ(θ |Ψps
θ
) = 4 ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

aa′−4
∣∣∣ ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

a
∣∣∣2, (8.14)
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The first term of the quantum Fisher information (Eq. 8.13) is

4
pps

θ

⟨ψ̇ps
θ
|ψ̇ps

θ
⟩= 4

pps
θ

Tr
(
F̂ ˙̂U(θ)ρ̂0

˙̂U†(θ)F̂†)= 4
pps

θ

Tr
(

F̂Âρ̂θ Â
)

(8.15)

=
4

pps
θ

Tr
(
∑
a
|a⟩⟨a|aρ̂θ ∑

a′
|a′⟩⟨a′|a′ ∑

f∈Fps

| f ⟩⟨ f |
)
, (8.16)

where, in Eq. 8.16, we have expressed Â and F̂ in their corresponding eigendecomposi-
tions. This expression can be rewritten in terms of the doubly extended Kirkwood-Dirac
quasiprobability distribution (qρ̂

a,a′, f = ⟨ f |a⟩⟨a| ρ̂ |a′⟩⟨a′| f ⟩):

4
pps

θ

∑
a,a′,

f∈F ps

Tr

(
aa′qρ̂θ

a,a′, f
|a⟩⟨ f |
⟨ f |a⟩

)
=

4
pps

θ

∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f aa′. (8.17)

Similarly, the second term of Eq. 8.13 is

4
(pps

θ
)2

∣∣⟨ψps
θ
|ψ̇ps

θ
⟩
∣∣2 = 4

(pps
θ
)2

∣∣Tr
(
F̂ ρ̂θ Â

)∣∣2 = 4
(pps

θ
)2

∣∣∣ ∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f a
∣∣∣2. (8.18)

Combining the expressions above gives Eq. 8.14:

IQ(θ |Ψps
θ
) = 4 ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

aa′−4
∣∣∣ ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

a
∣∣∣2. (8.19)

IV.II Supplementary note 2 – Proof of Theorem 2

Here, we prove Theorem 2. First, we upper-bound the right-hand side of Eq. 8.14, assuming
that all qρ̂θ

a,a′, f /pps
θ
∈ [0, 1]. We label the M eigenvalues of Â and arrange them in increasing

order: a1,a2, ...,aM, such that a1 ≡ amin and aM ≡ amax. Initially, we assume that the 0-
point of the eigenvalue axis is set such that a1 = 0 and aM = ∆a. In this scenario, all
the components of the first term of Eq. 8.14 are nonnegative. We temporarily ignore the
form of qρ̂θ

a,a′, f /pps
θ

, and treat this ratio as a general quasiprobability distribution. Then,

IQ(θ |Ψps
θ
) maximizes when qρ̂θ

a,a′, f /pps
θ

vanishes at all a′ values except a′ = amax. We define

qa ≡ ∑a′, f∈F ps qρ̂θ

a,a′, f /pps
θ

, such that all qa ∈ [0, 1] and ∑a qa = 1. If qρ̂θ

a,a′, f /pps
θ

is nonzero
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only when a′ = amax, Eq. 8.14 becomes

IQ(θ |Ψps
θ
) = 4aM ∑

a
qaa−4

(
∑
a

qaa
)2

. (8.20)

Expanding each sum, we obtain

IQ(θ |Ψps
θ
) = 4aM(qa1a1 +K +qaM aM)−4(qa1a1 +K +qaM aM)2 (8.21)

= 4aM(K +qaM aM)−4(K +qaM aM)2, (8.22)

where we used qa1a1 = 0 and defined K ≡ ∑a∈{a2,...,aM−1} qaa ≤ aM. As Â is not totally
degenerate, aM ̸= 0, and Eq. 8.22 is maximized when qaM = (aM −2K)/(2aM). This yields

max{IQ(θ |Ψps
θ
)}= a2

M = (∆a)2, (8.23)

where we have recalled that aM = ∆a.
We are left with proving that we can always set a1 = 0 and aM = ∆a. We continue to

assume that qρ̂θ

a,a′, f /pps
θ
∈ [0, 1], and we shift all the eigenvalues by a constant real value δa.

The effect on IQ(θ |Ψps
θ
) is

IQ(θ |Ψps
θ
)→ 4 ∑

a,a′,
f∈F ps

qρ̂θ

a,a′, f

pps
θ

(a+δa)(a′+δa)−4
[

∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f

pps
θ

(a+δa)
]2

(8.24)

= 4 ∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f

pps
θ

aa′−4
[

∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f

pps
θ

a
]2

+4δa

(
∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f

pps
θ

a− ∑
a,a′,

f∈F ps

qρ̂θ

a,a′, f

pps
θ

a′
)
= IQ(θ |Ψps

θ
).

(8.25)

The last equality holds because qρ̂

a,a′, f =
(
qρ̂

a′,a, f

)∗ generally and we are assuming that

qρ̂

a,a′, f ∈ R. Consequently, if all qρ̂θ

a,a′, f /pps
θ
∈ [0, 1], then IQ(θ |Ψps

θ
) ≤ (∆a)2. The second

term of Eq. 8.14 cannot be decreased by imaginary values in qρ̂θ

a,a′, f . Moreover, the first

term is necessarily real and nonnegative. Thus imaginary elements qρ̂θ

a,a′, f cannot increase

IQ(θ |Ψps
θ
). If IQ(θ |Ψps

θ
)> (∆a)2, then qρ̂θ

a,a′, f must have negative entries. �
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IV.III Supplementary note 3 – Infinite postselected quantum Fisher
information

Here, we show that the postselected quantum Fisher information IQ(θ |Ψps
θ
) can approach

infinity. The proof is by example; other examples might exist.
We assume that the generator Â has M ≥ 3 eigenvalues that are not all identical. We also

assume that we possess an estimate θ0 that lies close to the true value of θ : δθ ≡ θ −θ0, with
|δθ | ≪ 1. (The derivation of the quantum Fisher information also rests on the assumption
that one has access to such an estimate [27].)

By Eqs. 8.13, 8.15 and 8.18,

IQ(θ |Ψps
θ
) =

4
pps

θ

Tr
(

F̂ÂÛ(θ)ρ̂0Û(θ)†Â
)
− 4

(pps
θ
)2

∣∣∣Tr
(

F̂Û(θ)ρ̂0Û(θ)†Â
)∣∣∣2. (8.26)

We now choose F̂ and ρ̂0 such that IQ(θ |Ψps
θ
) approaches infinity. Crudely, pps

θ
must

approach 0 while Tr(F̂ÂÛ(θ)ρ̂0Û(θ)†Â) either stays constant or approaches 0 more slowly.
We label the M eigenvalues of Â and arrange them in increasing order: a1,a2, ...,aM, such
that a1 ≡ amin and aM ≡ amax.

First, we choose F̂ = | f1⟩⟨ f1|+ | f2⟩⟨ f2|, where

| f1⟩ ≡
|amax⟩+ |amin⟩√

2
, (8.27)

| f2⟩ ≡
i√
2
(|amax⟩− |amin⟩)+ |ak⟩

√
2

, (8.28)

and |ak⟩ ̸= |amax⟩ , |amin⟩ . We also choose ρ̂0 = |Ψ0⟩⟨Ψ0| such that

|Ψ0⟩ ≡ |Ψ0(θ0,φ)⟩= Û†(θ0)
1√
2

{
[cos(φ)− sin(φ)]

i√
2
(|amin⟩− |amax⟩)+ [cos(φ)+ sin(φ)] |ak⟩

}
.

(8.29)

φ ≈ 0 is a parameter that can be tuned to maximize the postselected Fisher information
for a given approximation accuracy δθ . As φ is a parameter of the input state, variations
in the Fisher information with φ will reflect the effects of disturbances to the input state.
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Substituting the expressions for F̂ and ρ̂0 into Eq. 8.26, we find

IQ(θ |Ψps
θ
) =8

{
5−2cos(2φ)

(
cos[(aM −ak)δθ ]+ cos[(ak −a1)δθ ]

)
+ cos[(aM −a1)δθ ]

× [sin(2φ)−1]− sin(2φ)
}−2

×
{

2a2
M −aMak +a2

k +2a2
1 − (3aM +ak)a1 +(aM −ak)(ak −a1)cos(4φ)

×
(

cos[(aM −a1)δθ ]−1
)

+(aM −ak)(ak −a1)cos[(aM −a1)δθ ]+2(aM −a1)cos(2φ)
(
(a1 −ak)cos[(aM −ak)δθ ]

+ (ak −aM)cos[(ak −a1)δθ ]
)
−2(aM −a1)

2 sin(2φ)

+(aM −a1)
(
(ak −a1)cos[(aM −ak)δθ ]

+ (aM −ak)cos[(ak −a1)δθ ]
)

sin(4φ)
}
.

The postselection probability is

pps
θ
=

1
8

{
5−2cos(2φ)

(
cos[(aM −ak)δθ ]+ cos[(ak −a1)δθ ]

)
+ cos[(aM −a1)δθ ][sin(2φ)−1]− sin(2φ)

}
.

(8.30)

In the limit as our estimate θ0 approaches the true value of θ , such that δθ → 0,

lim
δθ→0

pps
θ
= sin2(φ), (8.31)

lim
δθ→0

IQ(θ |Ψps
θ
) =

(cot(φ)−1)2

2
(∆a)2, and (8.32)

lim
δθ→0

pps
θ
×IQ(θ |Ψps

θ
) =

1
2
[1− sin(2φ)](∆a)2. (8.33)

In the limit as φ → 0,

lim
φ→0

[
lim

δθ→0
pps

θ

]
= 0, (8.34)

lim
φ→0

[
lim

δθ→0
IQ(θ |Ψps

θ
)
]
= ∞, and (8.35)

lim
φ→0

[
lim

δθ→0
pps

θ
×IQ(θ |Ψps

θ
)
]
=

1
2
(∆a)2. (8.36)

According to Eq. 8.35, if first δθ and then φ approaches 0 in Eq. 8.30, IQ(θ |Ψps
θ
) approaches

infinity.
There are a few points to note. First, IQ(θ |Ψps

θ
) diverges in the two ordered limits. In

any real experiment, one could not blindly set φ = 0, but would have to choose φ based
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Fig. 8.3 Scaled postselected quantum Fisher information. The figure shows the post-
selected quantum Fisher information (Eq. 8.30) multiplied by the pre-experiment vari-
ance Var(θ0) as a function of φ and δθ . For small values of δθ and φ , the value of
IQ(θ |Ψps

θ
)×Var(θ0) diverges. The eigenvalues a1, ak and aM are set to −1, 1 and 3,

respectively. Var(θ0) was set to 1×10−6.

on an estimate of θ . Second, if δθ ≈ 0, then θ0 ≈ θ , and the pre-experiment variance
of our initial estimate θ0, Var(θ0), must be small. That is, we begin the experiment with
much information about θ . Guided by the Cramér-Rao bound, we expect that, in a useful
experiment, IQ(θ |Ψps

θ
) would grow large, while 1/Var(θ0) < IQ(θ |Ψps

θ
). Figure 8.3

shows IQ(θ |Ψps
θ
)×Var(θ0) as a function of φ and δθ for an experiment where a1 = −1,

ak = 1, aM = 3 and Var(θ0) = 10−6. If θ0 is within a few σθ0 ≡
√

Var(θ0) of θ , then
IQ(θ |Ψps

θ
)×Var(θ0)≫ 1. Figure 8.3 shows that large values of 1/δθ can result in even

larger values of IQ(θ |Ψps
θ
). Figure 8.3 also illustrates the effect of input-state disturbances

of φ on IQ(θ |Ψps
θ
)×Var(θ0). Third, while the theoretical strategy investigated in this

appendix achieves an infinite postselected quantum Fisher information, the postselection also
“wastes” information as limφ→0[limδθ→0 pps

θ
×IQ(θ |Ψps

θ
)]< (∆a)2. If Â possesses certain

properties, it is possible to avoid wasting information through the postselection; we show
how in the following appendix.
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IV.IV Supplementary note 4 – Infinite postselected quantum Fisher in-
formation without loss of information

If the generator Â has M ≥ 4 eigenvalues, and the minimum and maximum eigenvalues are
both at least doubly degenerate, then IQ(θ |Ψps

θ
) can approach infinity without information’s

being lost in the events discarded by postselection. We show how below.
First, we assign the orthonormal eigenvectors |amin1⟩ and |amin2⟩ to the eigenvalues

a1 = amin and a2 = amin, respectively. Here, we have reused the eigenvalue notation from
Supp. Mat. IV.III. Similarly, we assign the orthonormal eigenvectors |amax1⟩ and |amax2⟩ to
the eigenvalues aM = amax and aM−1 = amax, respectively. Second, we set F̂ = | f1⟩⟨ f1|+
| f2⟩⟨ f2|, where

| f1⟩ ≡
|amax2⟩− |amin1⟩√

2
, (8.37)

| f2⟩ ≡
|amin2⟩− |amax1⟩√

2
. (8.38)

We also choose |Ψ0⟩ such that

|Ψ0(θ0,φ)⟩= Û†(θ0)
1
2
{
[cos(φ)− sin(φ)](|amax2⟩+ |amin2⟩)+ [sin(φ)+ cos(φ)](|amax1⟩+ |amin1⟩)

}
.

(8.39)

As in App. IV.III, φ ≈ 0 is a parameter that can be tuned to maximize IQ(θ |Ψps
θ
) for a given

approximation accuracy of δθ .
Substituting the expressions for F̂ and ρ̂0 into Eq. 8.26, we find

IQ(θ |Ψps
θ
) =

sin2 (2φ)(aM −a1)
2(

1− cos(2φ)cos [(aM −a1)δθ ]
)2 . (8.40)

The postselection probability is

pps
θ
=

1
2

{
1− cos(2φ)cos[(aM −a1)δθ ]

}
. (8.41)
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Again, we investigate the limit as our estimate θ0 approaches the true value of θ :

lim
δθ→0

pps
θ
= sin2(φ), (8.42)

lim
δθ→0

IQ(θ |Ψps
θ
) = cot2 (φ)(∆a)2, and (8.43)

lim
δθ→0

pps
θ
×IQ(θ |Ψps

θ
) = cos2 (φ)(∆a)2. (8.44)

In the limit as φ → 0,

lim
φ→0

[
lim

δθ→0
pps

θ

]
= 0, (8.45)

lim
φ→0

[
lim

δθ→0
IQ(θ |Ψps

θ
)
]
= ∞, and (8.46)

lim
φ→0

[
lim

δθ→0
pps

θ
×IQ(θ |Ψps

θ
)
]
= (∆a)2. (8.47)

In conclusion, the above strategy allows us to obtain an infinite value for IQ(θ |Ψps
θ
), while

pps
θ
×IQ(θ |Ψps

θ
) = (∆a)2. No information is lost in the postselection. As in Supp Mat.

IV.III, the results hold for the two ordered limits.
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Appendix A

GPU-accelerated staggered-leapfrog
code

Here I present essential sections of the GPU-accelerated staggered-leapfrog code central
to this work. For brevity, only the most interesting parts are shown, and are abridged with
pseudocode. While not public at the moment, the full program is available on a reasonable
request.

I Staggered-leapfrog CUDA kernel

The CUDA kernel of the C++ program, implementing the Staggered Leapfrog algorithm to
time-evolve some initial wave function. The entire program is too large to include here.

_ _ g l o b a l _ _ vo id rSpaceSL ( i n t N, f l o a t * PsiRe , f l o a t * PsiIm , f l o a t * V, boo l * domain ,
f l o a t t , i n t i t e r a t e R e , i n t * k e r n e l I n d s , i n t Np , i n t N1 , i n t dim ,
f l o a t ASAW, f l o a t kSAW, f l o a t SAWoffset , f l o a t wSAW, f l o a t cSAW,
f l o a t RS , f l o a t DRt0 , f l o a t URt0 , f l o a t ATB2 , f l o a t s2TB2 ,
f l o a t fbb , f l o a t * faa , i n t * S i z e s , f l o a t * Mass , f l o a t * dXs , f l o a t Xa , f l o a t Ya ) {

i n t i n d e x = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ; / / CUDA i n d e x

i f ( i n d e x < N && domain [ i n d e x ]==1) { / / check i f i n d e x i s w i t h i n t h e w a v e f u n c t i o n a n t NOT on a boundary

f l o a t Vt = 0 . 0 ; / / some p o t e n t i a l l y t ime d e p e n t e n t p a r t o f V

f o r ( i n t p = 0 ; p < Np ; p ++) {
/ / S e t c u r r e n t c o o r d i n a t e s
i n t i n d = ( ( i n d e x / ( i n t ) powf ( N1 , Np − p − 1 ) ) % ( N1 ) ) * dim ;
f l o a t x = Xa + k e r n e l I n d s [ i n d ] * dXs [ 0 ] ;
f l o a t y = dim > 1 ? Ya + k e r n e l I n d s [ i n d + 1] * dXs [ 1 ] : 0 . 0 ;
/ / Add t ime−d e p e n d e n t SAW p o t e n t i a l
Vt += ASAW * ( 1 . 0 − c o s f (kSAW * ( x − SAWoffset ) − wSAW * t ) ) ;

/ / t ime−d e p e n d e n t ramp p o t e n t i a l
f l o a t TBRamp = 0 . 5 * ( t a n h f ( RS * ( y + ( t − DRt0 ) * cSAW) ) + t a n h f (−RS * ( y + ( t − URt0 ) * cSAW ) ) ) ;
Vt −= ATB2 * Mass [ p ] * exp f (−s2TB2 * powf ( x , 2 . 0 ) / 2 . 0 ) * TBRamp ;

}

i n t i d x N e a r e s t N e i g h b o r =1;
i f ( i t e r a t e R e ) { / / I t e r a t e r e a l p a r t o f t h e wave f u n c t i o n
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PsiRe [ i n d e x ] += (V[ i n d e x ] + Vt ) * fbb * Ps i Im [ i n d e x ] ; / / The p o t e n t i a l p a r t
f o r ( i n t d = 0 ; d < dim ; d ++) {

f o r ( i n t p = 0 ; p < Np ; p ++) {
Ps iRe [ i n d e x ] += ( f a a [ d ] / Mass [ p ] ) * ( 2 . 0 * Ps i Im [ i n d e x ] ) ; / / On−s i t e k i n e t i c te rm

/ / C a l c u l a t e t h e i n d e x o f f s e t o f t h e n e a r e s t n e i g h b o r l a t t i c e s i t e
i f ( d == ( dim − 1 ) )

i d x N e a r e s t N e i g h b o r = 1 ;
e l s e i f ( d == ( dim − 2 ) )

i d x N e a r e s t N e i g h b o r = S i z e s [ dim − 1 ] ;
e l s e i f ( d == ( dim − 3 ) )

i d x N e a r e s t N e i g h b o r = S i z e s [ dim − 1]* S i z e s [ dim − 2 ] ;

i n t pp = Np − p −1;
w h i l e ( pp > 0) {

i d x N e a r e s t N e i g h b o r *= N1 ;
pp−−;

}

Ps iRe [ i n d e x ] −= ( f a a [ d ] / Mass [ p ] ) * Ps i Im [ i n d e x − i d x N e a r e s t N e i g h b o r ] ;
Ps iRe [ i n d e x ] −= ( f a a [ d ] / Mass [ p ] ) * Ps i Im [ i n d e x + i d x N e a r e s t N e i g h b o r ] ;

}
}

}
e l s e { / / I t e r a t e i m a g i n a r y p a r t o f t h e wave f u n c t i o n

Ps i Im [ i n d e x ] −= (V[ i n d e x ] + Vt ) * fbb * Ps iRe [ i n d e x ] ;
f o r ( i n t d = 0 ; d < dim ; d ++) {

f o r ( i n t p = 0 ; p < Np ; p ++) {
Ps i Im [ i n d e x ] −= ( f a a [ d ] / Mass [ p ] ) * ( 2 . 0 * Ps iRe [ i n d e x ] ) ; / / On−s i t e k i n e t i c te rm

/ / C a l c u l a t e t h e i n d e x o f f s e t o f t h e n e a r e s t n e i g h b o r l a t t i c e s i t e
i f ( d == ( dim − 1 ) )

i d x N e a r e s t N e i g h b o r = 1 ;
e l s e i f ( d == ( dim − 2 ) )

i d x N e a r e s t N e i g h b o r = S i z e s [ dim − 1 ] ;
e l s e i f ( d == ( dim − 3 ) )

i d x N e a r e s t N e i g h b o r = S i z e s [ dim − 1] * S i z e s [ dim − 2 ] ;

i n t pp = Np − p −1;
w h i l e ( pp > 0) {

i d x N e a r e s t N e i g h b o r *= N1 ;
pp−−;

}

Ps i Im [ i n d e x ] += ( f a a [ d ] / Mass [ p ] ) * Ps iRe [ i n d e x − i d x N e a r e s t N e i g h b o r ] ;
Ps i Im [ i n d e x ] += ( f a a [ d ] / Mass [ p ] ) * Ps iRe [ i n d e x + i d x N e a r e s t N e i g h b o r ] ;

}
}

}
}

}

II Eigensolver Code

A Python verison of the eigensolver code, using momentum space.

################################################################################################################################
# Rea l s p a c e e i g e n s o l v e r u s i n g t h e CPU
################################################################################################################################

i m p o r t numpy as np
from s r c . e x p o r t . e x p o r t E i g e n v a l u e s i m p o r t e x p o r t E i g e n v a l u e s
from s r c . i n p u t . p o t e n t i a l K S p a c e i m p o r t p o t e n t i a l K S p a c e
i m p o r t s r c . i n d e x . index1DtoND as index1DtoND
i m p o r t s r c . i n d e x . indexNDto1D as indexNDto1D
from s r c . g e t _ c c b i n i m p o r t g e t _ c c b i n
i m p o r t r e i k n a . f f t a s r f f t
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i m p o r t pycuda . g p u a r r a y as g p u a r r a y
from s r c . f f t . f f t A u x P s i i m p o r t ToReal
from skcuda i m p o r t l i n a l g

d e f kSpaceSolverGPU ( params , Ps iOut , mod , t h r ) : #Momentum−s p a c e e i g e n s o l v e r on a GPU

# r e a d i n p u t p a r a m e t e r s from params ( c o n t a i n t i n g a l l u s e r i n p u t s ) & d e c l a r e v a r i a b l e s

KxCO = params [ "KxECO" ] #momentun c u t t o f f s i n each d imens ion − t o t a l number o f p o i n t s i s 2* c u t o f f + 1 f o r k=0
KyCO = params [ "KyECO" ]
KzCO = params [ "KzECO" ]

Kx = 2 * KxCO + 1
Ky = 2 * KyCO + 1
Kz = 2 * KzCO + 1

dKx = params [ " dKx " ] # s t e p i n momentum i n each d imens ion
dKy = params [ " dKy " ]
dKz = params [ " dKz " ]

Np = params [ " Np " ] #Number o f p a r i t i c l e s
dim = params [ " dim " ] #Number o f d i m e n s i o n s
P s i S i z e = i n t ( ( Kx * Ky * Kz ) ** Np ) #WAve f u n c t i o n s i z e

SizesK = [ ]
SizesKE = [ ]
KCOs = [ ]
dKs = [ ]

f o r i i n r a n g e ( 0 , dim ) :
i f ( i == 0 ) :

S izesK . append ( Kx )
SizesKE . append (4 * KxCO + 1)
KCOs . append (KxCO)
dKs . append ( dKx )

e l i f ( i = = 1 ) :
S izesK . append ( Ky )
SizesKE . append (4 * KyCO + 1)
KCOs . append (KyCO)
dKs . append ( dKy )

e l i f ( i = = 2 ) :
S izesK . append ( Kz )
SizesKE . append (4 * KzCO + 1)
KCOs . append (KzCO)
dKs . append ( dKz )

# g e n e r a t e H a m i l t o n i a n m a t r i x f o r e i g e n f u n c t i o n s o l v i n g

# I n i t H a m i l t o n i a n
H = np . z e r o s ( P s i S i z e * P s i S i z e , d t y p e = np . complex64 )

Vk = p o t e n t i a l K S p a c e ( params , mod , t h r , True ) # G e n e r a t e t h e s t a t i c p o t e n t i a l f o r t h e problem ,
d e f i n e d by t h e u s e r b e f o r e , and t r a n s f o r m i t t o momentum s p a c e

i n d s C o l = np . z e r o s ( dim*Np , d t y p e =np . i n t 3 2 )
indsRow = np . z e r o s ( dim*Np , d t y p e =np . i n t 3 2 )
i n d s D i f f = np . z e r o s ( dim*Np , d t y p e =np . i n t 3 2 )

f o r k i n r a n g e ( 0 , P s i S i z e * * 2 ) : # Go ove r each row

j = i n t ( k % P s i S i z e ) # column i n d e x
i = i n t ( np . f l o o r ( np . f l o a t 6 4 ( k ) / np . f l o a t 6 4 ( P s i S i z e ) ) ) # i i s row i n d e x

i f ( j >= i ) :
index1DtoND . i n d e x ( j , i ndsCo l , SizesK , params )
index1DtoND . i n d e x ( i , indsRow , SizesK , params )
# c a l u l a t e o f f s e t from d i a g o n a l
f o r l i n r a n g e ( 0 , dim * Np ) :

i n d s D i f f [ l ] = i n d s C o l [ l ] − indsRow [ l ] i f ( i n d s C o l [ l ] − indsRow [ l ] ) >= 0 e l s e (4 * KCOs[ l % dim ] + 1)
+ ( i n d s C o l [ l ] − indsRow [ l ] ) # ( ( i n d s C o l [ l ] − indsRow [ l ] ) >= 0 ?

( i n d s C o l [ l ] − indsRow [ l ] ) : (4 * KCOs[ l % dim ] + 1) + ( i n d s C o l [ l ] − indsRow [ l ] ) )

# f i l l Hami l ton i an , making use o f h e r m i t i c i t y t o on ly f i l l h a l f and do c o n j u g a t e
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H[ j + P s i S i z e * i ] = Vk . p o t [ indexNDto1D . i n d e x ( i n d s D i f f , SizesKE , params ) ]

i f ( i == j ) : #on − d i a g o n a l e l e m e n t
f o r p i n r a n g e ( 0 , Np ) :

f o r d i n r a n g e ( 0 , dim ) :
H[ j + P s i S i z e * i ] += ( ( ( indsRow [ p * dim + d ] − KCOs[ d ] ) * dKs [ d ] ) ** 2) / (2 * params [ " Mass " ] [ p ] )

e l s e :
H[ i + P s i S i z e * j ] = H[ j + P s i S i z e * i ] . c o n j u g a t e ( )

#on−s i t e p o t e n t i a l

H=np . r e s h a p e (H. r a v e l ( ) , [ P s i S i z e , P s i S i z e ] , o r d e r = ’F ’ )
H_gpu = g p u a r r a y . to_gpu (H)
D=np . z e r o s ( P s i S i z e , d t y p e =np . f l o a t 3 2 )

l i n a l g . i n i t ( )
V_gpu , D_gpu = l i n a l g . e i g ( H_gpu , ’N’ , ’V’ )

D_gpu . g e t (D)
V_gpu . g e t (H)
H=np . r e s h a p e (H. r a v e l ( ) , [ P s i S i z e , P s i S i z e ] , o r d e r = ’C ’ )

f o r i i n r a n g e ( 0 , 5 ) :
p r i n t (D[ i ] )

c c b i n = g e t _ c c b i n ( )
PsiTemp = np . z e r o s ( Ps iOu t . s i z e , d t y p e = np . complex64 )
PsiTemp_gpu = g p u a r r a y . to_gpu ( PsiTemp )

f f t _ h = r f f t . FFT ( PsiTemp_gpu )
f f t c = f f t _ h . compi l e ( t h r , c o m p i l e r _ o p t i o n s = [ ’− ccb in ’ , c c b i n ] )

# Go ove r e i g e n s t a t e s t o c o n s t r u c t t h e i n i t wave f u n c t i o n as s p e c i f i e d by I n p u t Params
f o r J i n r a n g e ( 0 , 5 ) :

i f ( ( params [ " I n p u t S t a t e s " ] [ 2 * J ] != 0 . 0 ) o r ( params [ " I n p u t S t a t e s " ] [ 2 * J + 1] != 0 . 0 ) ) :
# PsiTemp = PsiTemp . r a v e l ( ) ;
indsR = np . z e r o s ( dim*Np )
indsK = np . z e r o s ( dim*Np )

f o r i i n r a n g e ( 0 , ( Kx*Ky*Kz )**Np ) :
index1DtoND . i n d e x ( i , indsK , SizesK , params )
f o r j i n r a n g e ( 0 , dim*Np ) :

indsR [ j ] = indsK [ j ] + params [ " S i z e s " ] [ j % dim ] − KCOs[ j % dim ] i f indsK [ j ] < KCOs[ j % dim ] e l s e
indsK [ j ] − KCOs[ j % dim ] # indsR [ j ] = indsK [ j ] < KCOs[ j % params−>dim ] ?
indsK [ j ] + params−>S i z e s [ j % params−>dim ] − KCOs[ j % params−>dim ] : indsK [ j ] − KCOs[ j % params−>dim ] ;

indNP = indexNDto1D . i n d e x ( indsR , params [ " S i z e s " ] , params )
PsiTemp . f l a t [ i n t ( indNP ) ] = H[ i , J ]

# ToReal ( params , PsiTemp , F a l s e )
# PsiTemp . r e s h a p e ( P s iOu t . s i z e )
PsiTemp_gpu . s e t ( PsiTemp )
f f t c ( PsiTemp_gpu , PsiTemp_gpu , 1 )
t h r . s y n c h r o n i z e ( )
PsiTemp_gpu . g e t ( PsiTemp )
ToReal ( params , PsiTemp , F a l s e )

i f ( params [ " TDSESolver " ] == " kSpace " ) :
P s iOu t . wave += ( params [ " I n p u t S t a t e s " ] [ 2 * J ] + 1 j * params [ " I n p u t S t a t e s " ] [ 2 * J + 1 ] ) * PsiTemp

e l s e :
Ps iOu t . wave += ( params [ " I n p u t S t a t e s " ] [ 2 * J ] + 1 j * params [ " I n p u t S t a t e s " ] [ 2 * J + 1 ] ) * PsiTemp . r a v e l ( )

i f ( params [ " TDSESolver " ] == " r S pa ce " ) : # do a f i n a l n o r m a l i s a t i o n
norm = Ps iO u t . norm ( )
Ps iOu t . wave /= np . s q r t ( norm )
# Wr i t e wave and e i g e n v a l u e s t o f i l e a s a p p r o p r i a t e
Ps iOu t . e x p o r t F u l l ( params , −1, " wave " )
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e l i f ( params [ " TDSESolver " ] == " kSpace " ) :
P s iOu t . e x p o r t F u l l ( params , −1, " wave " )
Ps iOu t . wave = np . r e s h a p e ( Ps iOu t . wave , Ps iOu t . s i z e )
Ps iOu t . h tod ( )
Ps iOu t . f f t ( t h r , 0 )
Ps iOu t . d toh ( )
norm = Ps iO u t . norm ( )
Ps iOu t . wave /= np . s q r t ( norm )
Ps iOu t . e x p o r t F u l l ( params , −1, "Kwave " )

e x p o r t E i g e n v a l u e s ( params , D, 5 ) # Wr i t e e i g e n v a l u e s t o f i l e





Appendix B

Finding optimal adjustment parameters
accounting for rise time τ

Here I present the pseudocode for finding the optimal adjustment parameters accounting for
rise time τ for single qubit control, using a gradient ascent method. This supplements the
results of Ch. 3, as it gives a general method for finding these parameters for any rise time
and required total angle of rotation. As the method is numeric, complete analytical results
for any input are not possible to present. However, this code should enable anyone to apply
the control methods found in Ch. 3 in a general case.

I Gradient-ascent search pseudocode

The pseudocode for finding the optimal adjustment parameters accounting for rise time τ for
single qubit control. The code is written in MATLAB, with the time-dependent evolution
relegated to the GPU-accelerated staggered-leapfrog code described in the main work and in
App. A.

v _ s i 2 n u = 1.312342066 e−2; % c o n v e r s i o n f a c t o r from n a t u r a l u n i t s t o nm
t _ s i 2 n u = 1.157676458 e2 ; %c o n v e r s i o n f a c t o r from n a t u r a l u n i t s t o ps

%% G e n e r a t e p o t e n t i a l & Find i n i t i a l s t a t e
Xa = −230; Xb = 230 ; Lx = Xb−Xa ; % D ef i ne l a t t i c e l e n g t h s c a l e s
Ya=−100; Yb=100; Ly=Yb−Ya ;

Nx = 201 ; % Number o f l a t t i c e p o i n t s

x = l i n s p a c e ( Xa , Xb , Nx ) ; % 1D L a t t i c e

dx = x ( 2 ) − x ( 1 ) ; % L a t t i c e s p a c i n g

hba r =1;
m=0.067;% E f f e c t i v e mass i n GaAs
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w1 = 130 ; % (nm)
w2 = 240 ; % (nm)

%C o n s t r u c t t h e Doubel DOt p o t e n t i a l , w i th a harmonic and c e n t r a l G a u s s i a n sub−p o t e n t i a l s
aHarmX =0.5*m* 0 . 0 0 0 0 5 ; %harmonic X p o t e n t i a l s t r e n g t h

a1GaussX = ( 0 . 8 ) *m; %1 s t g a u s s i a n p o t i n X s t r e n g t h
width1GaussX = 0 . 0 0 0 1 5 ;

Vjm = z e r o s ( Nx , Ny ) ;
f o r i = 1 : l e n g t h ( Vjm )

Vjm ( i )=aHarmX*x ( i ) ^2 + a1GaussX * exp(−width1GaussX *( x ( i ) ) ^ 2 / 2 ) ;
end

V = Vjm ;

[ eV ,D]= e i g (H ) ; %E i g e n s o l v e t h e H a m i l t o n i a n h e r e
D = d i a g (D ) ;

p s i 0 ; %Get t h e ground s t a t e
p s i 1 ; %Get t h e f i r s t e x c i t e d s t a t e

% Solve t h e TDSE

dE = D( 2 ) − D ( 1 ) ; %Energy d i f f e r e n c e between t h e s t a t e s

e p s i l o n C =0.42066 ; %E p s i l o n f a c t o r o f t h e q u b i t

Vpulse0 = −*dE / e p s i l o n C ; %R e f e r e n c e p u l s e s t r e n g t h

T r o t =2* p i / ( s q r t ( dE ^2+( Vpulse0 * e p s i l o n C ) ^ 2 ) ) ; %Time f o r a f u l l r o t a t i o n under t h e r e f e r e n c e p u l s e
Twai t =2* p i / dE ; %Time f o r a f u l l r o t a t i o n w i t h o u t p u l s i n g

gamma2 =1; %S e t p a r a m e t e r s c o n t r o l l i n g t h e s t e p s i z e i n p u l s e a m p l i t u d e and d u r a t i o n
r e f S t e p = [ 0 . 0 1 15* T r o t ] ;
p r o b e S t e p =[gamma2 *0 .01 gamma2 *0 .01* T r o t ] ;
gamma=20;

V t h e t a =[ p i / 6 , p i / 4 , p i / 2 ] ; %L i s t o f a n g l e s f o r which we want t o f i n d t h e p a r a m e t e r s
Ks t e ps = l e n g t h ( V t h e t a ) ;

%L i s t o f f i d e l i t y , a m p l i t u d e and d u r a t i o n a d j u s t m e n t s
KO= z e r o s ( 1 , Ks t ep s ) ;
KA= z e r o s ( 1 , Ks t ep s ) ;
Kt= z e r o s ( 1 , Ks t e ps ) ;

f o r K=1: Ks t e ps

%i n i t i a l i s e v a r i a b l e s
Oprev =0;
OAp1=0;
OAm1=0;
Otp1 =0;
Otm1 =0;

Amod=0;
Tmod=0;
t h e t a = V t h e t a (K);% Angle b e i n g o p t i m i s e d i n t h i s l oop

t a u F r a c =4;% Rise t ime p a r a m e t e r , a s d e f i n e d i n t h e main t e x t
t a u 1 = T r o t * ( 1 / ( t a u F r a c * 2 ) ) ; %a c t u a l r i s e t ime v a l u e

N= f l o o r ( (K/ K s t ep s )*1000000) + 200000 ;% Number o f i t e r a t i o n s o f t h e t ime−d e p e n d e n t code

Vmod0=[1 0 ] ; %i n i t i a l g u e s s o f a d j u s t m e n t p a r a m e t e r s . Here i n i t i a l i s e d t o s q u a r e p u l s e v a l u e s as a f i r s t g u e s s
Vmod=Vmod0 ;

s t e p s =200; %Max g r a d i e n t a s c e n t s e a r c h s t e p s
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%Keep t r a c k of t h e p r o g r e s s o f a d j u s t m e n t p a r a m e t e r s and f i d e l i t y
VmodHistory= z e r o s ( s t e p s + 1 , 2 ) ;
OHis to ry = z e r o s ( 1 , s t e p s + 1 ) ;
VmodHistory ( 1 , 1 ) = Vmod0 ( 1 ) ;
VmodHistory ( 1 , 2 ) = Vmod0 ( 2 ) ;
OHis to ry ( 1 ) =KO(K ) ;

%Step t h r o u g h t h e g r a d i e n t a s c e n t , b r e a k i f good enough f i d e l i t y i s r eached , i n c r e a s e s t e p s i z e p a r a m e t e r s on t h e way
f o r X=1: s t e p s

i f (X==1 && (1−KO(K)) <1 e−6)
b r e a k

end
i f (X~=1 && (1−O) > 0 . 1 )
b r e a k

end

i f X<=50
gamma=25;
gamma2 =1;

e l s e i f X<=100
gamma=50;
gamma2 = 0 . 1 ;

e l s e
gamma=75;
gamma2 = 0 . 0 1 ;

end

%The Gdescen t ( ) f u n c t i o n u s i s t h e GPU−a c c e l e r a t e d code t o t ime−e v o l v e t h e q u b i t sys tem wi th g i v e n p u l s e p a r a m e t e r s , and r e t u r n s t h e f i n a l \ \
%f i d e l i t y . Th i s i s t h e q u a n t i t y we want t o maximise . The sys tem i s i n i t i a l i s e d i n t h e [ 1 , 1 ] e q u a l s u p e r p o s i t i o n o f t h e ground and
%f i r s t e x c i t e d s t a t e s , and t h e n e v o l v e d under t h e a d j u s t e d p u l s e t w i c e − we have found t h a t
%t h i s s e t u p p r o d u c e s ve ry good r e s u l t s f o r a l l c a s e s

O= Gdescen t ( tau1 , t h e t a , Vmod , dE , V, ps i0 , p s i1 , N, s teepenPow );% c a l c u l a t e f i d e l i t y f o r c u r r e n t a d j u s t m e n t p a r a m e t e r s v a l u e

%Save v a l u e s used and f i d e l i t y r e c e i v e d
VmodHistory (X+1 ,1)=Vmod ( 1 ) ;
VmodHistory (X+1 ,2)=Vmod ( 2 ) ;
OHis to ry (X+1)=O;

%C a l c u l a t e t h e f i d e l i t y a f t e r t a k i n g a s t e p i n bo th d i r e c t i o n s i n p u l s e a m p l i t u d e and d u r a t i o n − t h i s c a l c u l a t e s t h e e f f e c t i v e g r a d i e n t
% i n f i d e l i t y a s a f u n c t i o n o f a d j u s t m e n t p a r a m e t e r s

OAp1= Gdescen t ( tau1 , t h e t a , [ Vmod( 1 ) + p r o b e S t e p ( 1 ) Vmod ( 2 ) ] , dE , V, ps i0 , p s i1 , N, s teepenPow ) ;
OAm1= Gdescen t ( tau1 , t h e t a , [ Vmod(1)− p r o b e S t e p ( 1 ) Vmod ( 2 ) ] , dE , V, ps i0 , p s i1 , N, s teepenPow ) ;
Otp1= Gdescen t ( tau1 , t h e t a , [ Vmod ( 1 ) Vmod( 2 ) + p r o b e S t e p ( 2 ) ] , dE , V, ps i0 , p s i1 , N, s teepenPow ) ;
Otm1= Gdescen t ( tau1 , t h e t a , [ Vmod ( 1 ) Vmod(2)− p r o b e S t e p ( 2 ) ] , dE , V, ps i0 , p s i1 , N, s teepenPow ) ;

%Update t h e a d j u s t m e n t p a r a m e t e r s based on t h e g r a d i e n t c a l c u l a t e d
Vmod=Vmod + s t epDecay *gamma * [ 0 . 5 * ( OAp1−OAm1)* r e f S t e p ( 1 ) / p r o b e S t e p ( 1 ) 0 . 5 * ( Otp1−Otm1 )* r e f S t e p ( 2 ) / p r o b e S t e p ( 2 ) ] ;

end

%Save t h e maximum f i d e l i t y o b t a i n e d − b e s t r e s u l t s
[ Omax , Imax ]=max ( OHis to ry ) ;

KO(K)=Omax ;
KA(K)= VmodHistory ( Imax , 1 ) ;
Kt (K)= VmodHistory ( Imax , 2 ) ;
KTTotal (K)= T r o t * ( t h e t a / ( 2 * p i ) ) + Kt (K ) ;

end

%Save r e l e v a n t f i n a l outcomes t o f i l e f o r f u r t h e r use
save ( ’ descSweepBloch . mat ’ , ’KO’ , ’KA’ , ’ Kt ’ , ’ KTTotal ’ , ’ Vthe ta ’ ) ;
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