8 research outputs found

    Multi time-step wavefront reconstruction for tomographic adaptive-optics systems

    Get PDF
    In tomographic adaptive-optics (AO) systems, errors due to tomographic wavefront reconstruction limit the performance and angular size of the scientific field of view (FoV), where AO correction is effective. We propose a multi time-step tomographic wavefront reconstruction method to reduce the tomographic error by using measurements from both the current and previous time steps simultaneously. We further outline the method to feed the reconstructor with both wind speed and direction of each turbulence layer. An end-to-end numerical simulation, assuming a multi-object AO (MOAO) system on a 30 m aperture telescope, shows that the multi time-step reconstruction increases the Strehl ratio (SR) over a scientific FoV of 10 arc min in diameter by a factor of 1.5–1.8 when compared to the classical tomographic reconstructor, depending on the guide star asterism and with perfect knowledge of wind speeds and directions. We also evaluate the multi time-step reconstruction method and the wind estimation method on the RAVEN demonstrator under laboratory setting conditions. The wind speeds and directions at multiple atmospheric layers are measured successfully in the laboratory experiment by our wind estimation method with errors below 2  ms^(−1). With these wind estimates, the multi time-step reconstructor increases the SR value by a factor of 1.2–1.5, which is consistent with a prediction from the end-to-end numerical simulation

    Statistics of turbulence parameters at Maunakea using the multiple wavefront sensor data of RAVEN

    Get PDF
    Prior statistical knowledge of atmospheric turbulence is essential for designing, optimizing and evaluating tomographic adaptive optics systems. We present the statistics of the vertical profiles of C^2_N and the outer scale at Maunakea estimated using a SLOpe Detection And Ranging (SLODAR) method from on-sky telemetry taken by a multi-object adaptive optics (MOAO) demonstrator, called RAVEN, on the Subaru telescope. In our SLODAR method, the profiles are estimated by fitting the theoretical autocorrelations and cross-correlations of measurements from multiple Shack–Haltmann wavefront sensors to the observed correlations via the non-linear Levenberg–Marquardt Algorithm (LMA). The analytical derivatives of the spatial phase structure function with respect to its parameters for the LMA are also developed. From a total of 12 nights in the summer season, a large ground C^2_N fraction of 54.3 per cent is found, with median estimated seeing of 0.460 arcsec. This median seeing value is below the results for Maunakea from the literature (0.6–0.7 arcsec). The average C^2_N profile is in good agreement with results from the literature, except for the ground layer. The median value of the outer scale is 25.5 m and the outer scale is larger at higher altitudes; these trends of the outer scale are consistent with findings in the literature

    Optomechanical design of TMT NFIRAOS Subsystems at INO

    Get PDF
    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints

    NFIRAOS adaptive optics for the Thirty Meter Telescope

    Get PDF
    NFIRAOS (Narrow-Field InfraRed Adaptive Optics System) will be the first-light multi-conjugate adaptive optics system for the Thirty Meter Telescope (TMT). NFIRAOS houses all of its opto-mechanical sub-systems within an optics enclosure cooled to precisely -30°C in order to improve sensitivity in the near-infrared. It supports up to three client science instruments, including the first-light InfraRed Imaging Spectrograph (IRIS). Powering NFIRAOS is a Real Time Controller that will process the signals from six laser wavefront sensors, one natural guide star pyramid WFS, up to three low-order on-instrument WFS and up to four guide windows on the client instrument’s science detector in order to correct for atmospheric turbulence, windshake, optical errors and plate-scale distortion. NFIRAOS is currently preparing for its final design review in late June 2018 at NRC Herzberg in Victoria, British Columbia in partnership with Canadian industry and TMT

    Optomechanical design of TMT NFIRAOS Subsystems at INO

    Get PDF
    The adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). Recently, INO has been involved in the optomechanical design of several subsystems of NFIRAOS, including the Instrument Selection Mirror (ISM), the NFIRAOS Beamsplitters (NBS), and the NFIRAOS Source Simulator system (NSS) comprising the Focal Plane Mask (FPM), the Laser Guide Star (LGS) sources, and the Natural Guide Star (NGS) sources. This paper presents an overview of these subsystems and the optomechanical design approaches used to meet the optical performance requirements under environmental constraints

    NFIRAOS adaptive optics for the Thirty Meter Telescope

    Get PDF
    NFIRAOS (Narrow-Field InfraRed Adaptive Optics System) will be the first-light multi-conjugate adaptive optics system for the Thirty Meter Telescope (TMT). NFIRAOS houses all of its opto-mechanical sub-systems within an optics enclosure cooled to precisely -30°C in order to improve sensitivity in the near-infrared. It supports up to three client science instruments, including the first-light InfraRed Imaging Spectrograph (IRIS). Powering NFIRAOS is a Real Time Controller that will process the signals from six laser wavefront sensors, one natural guide star pyramid WFS, up to three low-order on-instrument WFS and up to four guide windows on the client instrument’s science detector in order to correct for atmospheric turbulence, windshake, optical errors and plate-scale distortion. NFIRAOS is currently preparing for its final design review in late June 2018 at NRC Herzberg in Victoria, British Columbia in partnership with Canadian industry and TMT

    Hypertelescopes for direct imaging and coronagraphy

    No full text
    Densified-pupil interferometers, also called hypertelescopes, can provide direct images usable for general imaging and coronagraphy. Their properties can be deduced from a comparison with blazed diffraction gratings. Ground-based versions are considered, in the form of 10 km planar telescope arrays or of 5 km spherical arrays comparable to the Arecibo radio-telescope. Steps are taken for tests at Arecibo. Space versions are proposed for detecting extra-solar planets and, in a second step, for resolving these planets and searching photosynthetic bio-markers
    corecore