8 research outputs found

    Fine-grained reductions from approximate counting to decision

    No full text
    In this paper, we introduce a general framework for fine-grained reductions of approximate counting problems to their decision versions. (Thus we use an oracle that decides whether any witness exists to multiplicatively approximate the number of witnesses with minimal overhead.) This mirrors a foundational result of Sipser (STOC 1983) and Stockmeyer (SICOMP 1985) in the polynomialtime setting, and a similar result of Müller (IWPEC 2006) in the FPT setting. Using our framework, we obtain such reductions for some of the most important problems in fine-grained complexity: the Orthogonal Vectors problem, 3SUM, and the NegativeWeight Triangle problem (which is closely related to All-Pairs Shortest Path). While all these problems have simple algorithms over which it is conjectured that no polynomial improvement is possible, our reductions would remain interesting even if these conjectures were proved; they have only polylogarithmic overhead, and can therefore be applied to subpolynomial improvements such as the n 3 /exp(Θ( p logn))-time algorithm for the Negative-Weight Triangle problem due to Williams (STOC 2014). Our framework is also general enough to apply to versions of the problems for which more efficient algorithms are known. For example, the Orthogonal Vectors problem over GF(m) d for constant m can be solved in time n · poly(d) by a result of Williams and Yu (SODA 2014); our result implies that we can approximately count the number of orthogonal pairs with essentially the same running time. We also provide a fine-grained reduction from approximate #SAT to SAT. Suppose the Strong Exponential Time Hypothesis (SETH) is false, so that for some 1 < c < 2 and all k there is an O(c n )- time algorithm for k-SAT. Then we prove that for all k, there is an O((c +o(1))n )-time algorithm for approximate #k-SAT. In particular, our result implies that the Exponential Time Hypothesis (ETH) is equivalent to the seemingly-weaker statement that there is no algorithm to approximate #3-SAT to within a factor of 1 + ε in time 2 o(n) /ε 2 (taking ε > 0 as part of the input). A full version of this paper containing detailed proofs is available at https://arxiv.org/ abs/1707.04609

    A fixed-parameter perspective on #BIS

    Get PDF
    The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is the canonical approximate counting problem that is complete in the intermediate complexity class #RH\Pi_1. It is believed that #BIS does not have an efficient approximation algorithm but also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by considering variants of the problem parameterised by the size of the independent set. We exhaustively map the complexity landscape for three problems, with respect to exact computation and approximation and with respect to conventional and parameterised complexity. The three problems are counting independent sets of a given size, counting independent sets with a given number of vertices in one vertex class and counting maximum independent sets amongst those with a given number of vertices in one vertex class. Among other things, we show that all of these problems are NP-hard to approximate within any polynomial ratio. (This is surprising because the corresponding problems without the size parameter are complete in #RH\Pi_1, and hence are not believed to be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems have efficient exact fixed-parameter algorithms.Comment: to appear in Algorithmic
    corecore