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Ranking functions such as PageRank assign numeric values (ranks) to nodes of graphs, most notably the web
graph. Node rankings are an integral part of Internet search algorithms, since they can be used to order the
results of queries. However, these ranking functions are famously subject to attacks by spammers, who modify
the web graph in order to give their own pages more rank.

We characterize the interplay between rankers and spammers as a game. We define the two critical features
of this game, spam resistance and distortion, based on how spammers spam and how rankers protect against
spam. We observe that all the ranking functions that are well-studied in the literature, including the original
formulation of PageRank, have poor spam resistance, poor distortion, or both.

Finally, we study Min-PPR, the form of PageRank used at Google itself, but which has received no (theoretical
or empirical) treatment in the literature. We prove that Min-PPR has low distortion and high spam resistance. A
secondary benefit is that Min-PPR comes with an explicit cost function on nodes that shows how important
they are to the spammer; thus a ranker can focus their spam-detection capacity on these vulnerable nodes. Both
Min-PPR and its associated cost function are straightforward to compute.
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1 INTRODUCTION
Ranking functions such as PageRank [Brin and Page, 1998] assign numeric values (ranks) to nodes of
graphs, most notably the web graph. Node rankings are an integral part of Internet search algorithms,
since they can be used to order the results of queries. However, these ranking functions are famously
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subject to attacks by spammers, who modify the web graph in order to give their own pages more
rank.

In the literature on ranking functions, resistance to spam attacks is treated heuristically [Fogaras
et al., 2005, Gyöngyi et al., 2004, Liu et al., 2016, Ng et al., 2001b] or with respect to specific ranking
functions versus specific attacks [Cheng and Friedman, 2006, Hopcroft and Sheldon, 2008, Ng et al.,
2001a]. Much of the ranking literature has focused on two aspects of fighting spam: link-spam
detection [Alvisi et al., 2014, Andersen et al., 2008, Cheng and Friedman, 2006, Gyongyi et al.,
2006, Yu, 2011, Yu et al., 2010, 2008]; and heuristically designing ranking functions that are spam
resistant [Bhattacharjee and Goel, 2006, Gyöngyi et al., 2004, Hopcroft and Sheldon, 2008, Krishnan
and Raj, 2006, Kumar et al., 2006, Liu et al., 2016].

We combine the notion of attack detection and attack resistance into a single two-party game that
allows us to reason about ranking functions.

• A spammer can perform a Sybil attack1:
– Create as many nodes in the web graph as they like, for free;
– Change the out-links of all nodes they own, for free;
– Acquire (by buying, hacking, etc) existing nodes in the web graph, at some cost, except for

nodes in a non-empty trusted set, which cannot be acquired.
• The ranker can:

– Modify the ranking function to make it more resistant to spam, subject to quality constraints;
– Expend effort to detect if nodes have been acquired by spammers, which we model as raising

the cost for spammers to acquire those nodes.
In this game, the spammer wants to maximize the sum of rank of its nodes, and naturally the ranker
wants to minimize this quantity. The spammer knows the ranking function and the cost function,
whereas the ranker does not know what actions the spammer is taking.

Trusted nodes play a critical role. Without trusted nodes, the ranker cannot hope to resist a spam
attack, because the spamming model is general enough that the spammer could make a complete (or
partial) replica of the web graph, and the ranker would not know which is the correct version. On the
other hand, the ranker cannot simply rank trusted nodes and ignore untrusted nodes because: it is
prohibitively expensive to certify that all unspammed nodes are trusted; and, restricting rank to only
a few nodes would introduce local (ranking-function) distortions, formally defined in Section 4.

This rather broad characterization of spam attacks and defense leaves two obvious questions:
• Is there a way to define the spam resistance and distortion of arbitrary ranking functions that is

mathematically tractable and matches intuition and practice?
• Do these definitions yield mathematical and practical insight? That is, can we prove that there

is a ranking function with both low distortion and high spam resistance? In other words, does
the ranker have a good strategy?

Our contribution. In this paper, we answer both questions in the affirmative. In Section 3, we refine
the object of the spamming game to be the highest cost-benefit ratio the ranker can force on the
spammer, which we call the spam resistance of a ranking function. In Section 4, we add a further
constraint to the game, which is that the ranker must try to minimize distortion. This constraint is
meant to avoid trivial ranking functions, such as those that place all rank on a few trusted nodes.
These two sections lean heavily on the practical literature on spam resistance in order to come up with
a clean and mathematically interesting definition of the spam game that is mathematically tractable.

The spammer would seem to have too much power in this game, because it has full knowledge
and need not concern itself with the quality of the final ranking. Indeed, we find that there is an

1The moves by the spammer are quite general and subsume specific attacks treated in the literature [Viswanath et al., 2011]
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intuitive tradeoff between spam resistance and distortion in that we observe, rather dispiritingly, that
all ranking functions in the literature exhibit either high distortion, low spam resistance, or both.

Interestingly, this leaves open the question of the properties of the type of PageRank that Google
itself used. To the best of our knowledge, Google has never used uniform reset PageRank for web-
search ranking, in part because of its obvious susceptibility to spammers. Instead, Google has used
a variant of PageRank that we call Min-PPR (and which we define in Section 5), because it was
intuitively considered to be more spam resistant [Farach-Colton, [n. d.]]. We know of no treatment of
Min-PPR in the literature.

In Section 5, we set out our main contribution: we show that this faith in Min-PPR is well placed.
We prove that Min-PPR exhibits both low distortion and high spam resistance subject to the mild
technical condition of fast mixing. Fast mixing is known to hold in real-world social and semantic
networks, and if it does not hold then we prove that no variant of PageRank has low distortion.

No ranking function is spam resistant if the ranker makes no effort to detect spam, so we also
show that we can compute a cost function for Min-PPR that establishes the importance of each node
in fighting spam. In other words, this cost function shows which nodes the ranker should focus its
spam-fighting efforts on.

Proving these results requires a substantial technical contribution: while our definitions of distortion
and spam resistance are natural, they are also difficult to analyze. The proof that establishes the
distortion of Min-PPR relies on a sophisticated analysis of mixing times, whereas the proof that
establishes the spam resistance of Min-PPR relies on an intricate extremal argument. These analyses
are left to the Appendices A and B respectively due to space restrictions.

In summary, in this paper we reimagine the arms race between web rankers and web spammers
as a two-person game. We define the moves of each party. We show that there is a natural tension
between spam resistance and distortion, but we show that the ranker can gain the upper hand; that is,
we exhibit a ranking function that has low distortion and high spam resistance.

Roadmap. In Section 2, we introduce preliminary notation. In Section 3, we formally define spam
resistance and in Section 4, we formally define distortion. In both sections, we survey existing
ranking functions and provide preliminary results. In Section 5, we formally define Min-PPR and
give an overview of the main theorems related to its spam resistance and distortion. In Section 6, we
explore the algebraic properties of PageRank, which may be of independent interest, and which are
used in our main proofs. In Section 7, we discuss related work. In the Appendices A and B, we prove
the theorems outlined in Section 5, and in Appendix C, we present experimental results that validate
our theoretical analysis.

2 PRELIMINARIES
Let G = (V, E) be an 𝑛-node graph. Since we will frequently discuss random walks on graphs, we
always assume that any node with no outgoing edges to other nodes has a self-loop. For any edge
(𝑢, 𝑣) ∈ E, 𝑣 is an out-neighbor of 𝑢, and 𝑢 is an in-neighbor of 𝑣 . For any 𝑣 ∈ V, let 𝑁in (𝑣) and
𝑁out (𝑣) denote the set of in-neighbors and out-neighbors of 𝑣 , respectively. Note that |𝑁out (𝑣) | > 0
for all 𝑣 , because of the self loops. Let 𝑑in (𝑣) = |𝑁in (𝑣) |, and 𝑑out (𝑣) = |𝑁out (𝑣) |.

We extend the min operator on vectors to component-wise min, so that, for vectors x1, . . . , xk,

min{x1, . . . , xk}[𝑖] = min{x1 [𝑖], . . . , xk [𝑖]}.

For any real vector x, let | |x| | := ∑
𝑖 |x𝑖 | be its ℓ1-norm, and if x ≠ 0 then we define ⌈⌈x⌋⌋ := x/| |x| | to

be the standard ℓ1-normalization. Let the support of x be the set of coordinates 𝑖 with x[𝑖] ≠ 0.
We define a ranking vector for a graph G = (V, E) to be any function x̂ : V → [0, 1] such that∑
𝑣∈V x̂[𝑣] = 1. (We normalise our rankings to facilitate easy comparison.) Note that any ranking
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vector also defines a probability distribution on V. We also adopt the convention that for all A ⊆ V,
x̂[𝐴] = ∑

𝑣∈A x̂[𝑣].
Let G be the set of all directed graphs on which the uniform random walk is ergodic. For all

G ∈ G, we write R(G) for the stationary distribution of the uniform random walk; we call this the
reference rank of G.

We define PageRank on an arbitrary graph G = (V, E) as follows. Let Y ∈ (0, 1), and let r̂ be
a probability distribution on V. We write r̂[𝑣] for the probability of choosing 𝑣 ∈ V under r̂. The
PageRank random walk’s state space is V. From any node 𝑣 ∈ V, with probability 1 − Y it traverses
a uniformly random out-edge from 𝑣 , and with probability Y it moves to a node drawn from r̂; this
event is called a reset2. We denote this random walk model by (G, r̂, Y). The stationary distribution of
(G, r̂, Y) is the PageRank of G with reset probability Y and reset vector r̂. We denote the value of this
PageRank at a node 𝑣 ∈ V by R(G, r̂, Y) [𝑣]; note that R(G, r̂, Y) is a ranking vector. (Since (G, r̂, Y) is
ergodic for all choices of parameters, R(G, r̂, Y) [𝑣] is uniquely defined.)

The original version of PageRank defined by Brin and Page [Page et al., 1999] takes r̂ to be the
uniform distribution, so that r̂[𝑣] = 1/|V| for all 𝑣 ∈ V. We denote this vector by û, and call this
version of PageRank the uniform PageRank (UPR). Personalized PageRank (PPR) instead takes r̂ to
be of the form r̂[𝑐] = 1 for some 𝑐 ∈ V, which is called the center node. Thus each time the walk
(G, r̂, Y) resets, it returns deterministically to 𝑐. We denote the resulting ranking vector by R(G, 𝑐, Y).

We define a ranking algorithm to be any algorithm that takes as input an arbitrary graph H and an
arbitrary non-empty trusted set T ⊆ VH and outputs a ranking vector. For example, T-PPRY is the
version of PPR in which the center vertex is trusted.

We will see in Observation 2 that any ranking algorithm that does not make use of T has zero spam
resistance.

For all graphs G ∈ G and all probability distributions p̂ and q̂ over VG, we define the total variation
distance between p̂ and q̂ by

𝑑TV (p̂, q̂) :=
1
2

∑︁
𝑣∈VG

��p̂[𝑣] − q̂[𝑣]
��.

In the following definition, let p̂𝑡,𝑣 be the distribution of the uniform random walk on G from initial
state 𝑣 ∈ VG at time 𝑡 ≥ 0. Then for all 𝜌 > 0, the (worst-case) mixing time of G to within error 𝜌 is
given by

𝜏G (𝜌) := min
{
𝑡 ≥ 0 : for all 𝑣 ∈ VG, 𝑑TV

(
p̂𝑡,𝑣, R(G)

)
≤ 𝜌

}
.

Following standard practice, we take 𝜌 to be 1/4 when we don’t specify it.

3 DEFINING SPAM RESISTANCE
We first give some examples of ranking algorithms that show differing levels of spam resistance. We
then define spam resistance formally, we note that it matches our intuition on the examples provided,
and we prove some preliminary results.

UPR would appear to be trivial to spam. Consider, for example, the effect of making a large set
of new nodes with self-loops. The more new nodes the spammer makes (for free), the larger the
probability that the PageRank random walk will reset to those nodes, and the more rank the spammer
will capture. In fact, this sort of attack is known to be viable in practice [Baeza-Yates et al., 2005,
Gyöngyi and Garcia-Molina, 2005].

In 1999, Kleinberg [Kleinberg, 1999] introduced the notion of hub and authority scores and the
HITS algorithm to compute them. Intuitively, a page receives a high authority score if it is pointed

2Also known in the literature as teleportation.
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to by many high-quality hubs. A page receives a high hub score if it points to many high-scoring
authorities. Hub scores depend on out-links and are therefore free to spam by creating new nodes and
pointing them to nodes with high authority scores. But once a spammer owns many pages with high
hub scores, it can create pages with high authority scores, once again for free. Such considerations
are far from hypothetical. This vulnerability was already well understood in 2004 [Gyongyi and
Garcia-Molina, 2004], and Assano et. al [Asano et al., 2007] report that HITS was unusable by
2007, due to its spammability. Like UPR, we should expect HITS to have no spam resistance, as the
spammer can acquire high rank at no cost.

Next, consider SuperTrust, which assigns non-zero rank only to trusted nodes, which are known
not to belong to spammers. SuperTrust is unspammable, because the spammer receives no rank no
matter what they do. (Of course, because in general very few nodes can be fully trusted, in most
cases SuperTrust has very high distortion and is not suitable as a ranking algorithm.)

Finally, consider T-PPRY , the version of PPR in which the center vertex is trusted and cannot be
subverted by a spammer. It is not difficult for the spammer to arrange things so that whenever the
PageRank random walk enters a vertex they own, it remains in spammer-owned territory until the next
reset; however, the random walk will only enter spammer-owned vertices 𝑣 at a rate commensurate
with 𝑣’s true PPR. Thus in order to acquire significant rank, the spammer has to invest time and effort
into acquiring nodes which already have significant rank, and we should expect T-PPRY to be quite
strongly spam resistant.

We now give a definition of spam resistance that coincides with our intuition that HITS and UPR
are not at all spam resistant, T-PPRY is quite strongly spam resistant, and SuperTrust has unbounded
spam resistance.

A formal definition of spam resistance. In the examples given above, there was no mention of how
much it costs to acquire a node. Here, we make explicit the cost model, the changes a spammer can
make to a graph, and the cost/benefit ratio a spammer can achieve. It is this cost/benefit ratio that
defines spam resistance.

Let G = (VG, EG), and let TG ⊆ VG be the set of trusted sites. Then VG \ TG is the set of all sites
that might be acquired by the spammer. For all P ⊆ VG \TG, let GP be the set of all graphs obtainable
from G by:

• Adding an arbitrary (possibly empty) set S of new vertices;
• Changing all the out-edges of vertices in S ∪ P in an arbitrary fashion.

Thus GP is the set of all graphs that the spammer can obtain after acquiring the vertices in P. For any
H = (VH, EH) ∈ GP, let SH, the set of spam nodes of H, be VH \ VG .

We are now ready to define the cost and benefit of spamming. Like ranks, we will normalize costs
in order to make them comparable.

Let 𝑓 be a ranking algorithm, so that 𝑓 (H,T) returns a rank vector for all graphs H and all
non-empty T ⊆ VH. We think of H as a post-spam graph, belonging to some GP; thus the ranking
algorithm does not know which nodes are owned by the spammer but does know which nodes are
trusted. We extend 𝑓 (H,T) from vertices to sets in the standard way: For all X ⊆ VH, 𝑓 (H,T) [X] =∑

𝑣∈X 𝑓 (H,T) [𝑣].
A cost function is a normalized function on VG \ TG, i.e. 𝐶 (𝑣) ≥ 0 for all 𝑣 ∈ VG \ TG and∑
𝑣∈VG\TG 𝐶 (𝑣) = 1. Let C(G,TG ) denote the set of all such cost functions.3 We extend this definition

to subsets of nodes as above.

3Note that we restrict the spammer to acquiring whole nodes, rather than individual edges. This is because S could be
arbitrarily large, so the set of possible edges between VG \ TG and S is also arbitrarily large, and under an edge-acquisition
model we would be unable to normalize costs. For every ranking algorithm considered in this paper, this technical restriction
makes no difference to spammability.
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We are ready to define spam resistance, as follows:

DEFINITION 1. For all classes A of graphs:
(1) For all 𝜎 > 0, a ranking algorithm 𝑓 is 𝜎-spam resistant on A if, for all G = (VG, EG) ∈ A and

all non-empty TG ⊆ VG, there exists a cost function 𝐶 ∈ C(G,TG ) such that, for all P ⊆ VG \ TG
and H ∈ GP with 𝑓 (H,TG) [SH ∪ P] > 0,

𝐶 (P)
𝑓 (H,TG) [SH ∪ P] ≥ 𝜎.

(2) A ranking algorithm 𝑓 has unbounded spam resistance on A if, for all G = (VG, EG) ∈ A, all
non-empty TG ⊆ VG, all P ⊆ VG \ TG, and all H ∈ GP,

𝑓 (H,TG) [SH ∪ P] = 0.
(3) A ranking algorithm 𝑓 has zero spam resistance on A if, for all G = (VG, EG) ∈ A, there

exists a non-empty TG ⊆ VG and H ∈ G∅ such that 𝑓 (H,TG) [SH] > 0.

Intuition of the cost function. The cost function captures how difficult it is for a spammer to subvert
a node in a way that is hidden from the spam-detection efforts of the ranker. Thus, for example,
a search engine would be able to substantially increase the cost of a specific node by assigning a
human to watch it carefully and to de-index it if they suspected it had been acquired by a spammer,
and in fact search engines do manipulate their interaction with spammers by such methods [Sullivan,
[n. d.]]. The correct way to view the cost function is as a guarantee that the ranker has a strategy to
force a spammer to pay for their rank; using a spam-resistant ranking function by itself is not enough.
Thus, when we establish that a ranking function is spam resistant, we must exhibit a cost function
that the ranker can efficiently approximate, then use in conjunction with that ranking function.

Indeed, while the definition of spam resistance only requires that some good cost function exist,
all our proofs of spam resistance will construct explicit cost functions to direct the ranker’s spam-
detection effort. Observe that no amount of such effort is sufficient if the ranking function has
zero spam resistance and that no such effort is needed if the ranking function has unbounded spam
resistance. An examination of SuperTrust and UPR supports this interpretation.

Preliminary results. As a warm-up, to see that trusted sites are necessary, consider any ranking
algorithm 𝑓 whose output does not depend on T. Let G be an arbitrary graph, and let H consist of two
disjoint copies of G spanning vertex sets V1 and V2. Then given H as input, without loss of generality
𝑓 assigns rank at least 1/2 to V1. Viewing H as a spam graph in H[V2]∅ , where the base graph H[V2]
is the copy of G spanning V2, P = ∅, and SH = V1, we see that the spammer has attained rank at least
1/2 without buying any vertices. Thus we have proved the following.

OBSERVATION 2. Any ranking algorithm that is invariant under membership in TG has zero spam
resistance on all graph classes.

Observation 2 implies that UPR and HITS have zero spam resistance. On the positive side, any
ranking algorithm that assigns non-zero rank only to vertices in TG (that is, any variant of SuperTrust)
has unbounded spam resistance; in fact, these are the only ranking algorithms with unbounded spam
resistance. Moreover, the trusted variant T-PPRY of PPR also has high spam resistance, as follows.

LEMMA 3. For all Y ∈ (0, 1), T-PPRY is Y-spam resistant on all graph classes. The cost function
that establishes this spam resistance is the T-PPRY itself, normalized over untrusted nodes.

We prove this in Section B, but for now, suppose the spammer acquires a node 𝑣 with T-PPRY (𝑣) =
𝑥 and redirects its outward edges into the set S ∪ P of vertices they own. Then each time the random
walk associated with T-PPRY hits 𝑣 , which happens at rate roughly 𝑥 , at worst it will stay in S ∪ P
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until the walk next resets, which takes 1/Y time on average. So the spammer should acquire rank at
most 𝑥/Y. As we might expect, Lemma 3 is essentially tight.

OBSERVATION 4. For all Y, [ ∈ (0, 1), T-PPRY is not Y · (1+[)/(1− Y)-spam resistant on the class
of all cliques.

4 DEFINING DISTORTION
In this section, we define the distortion of a ranking vector. We first discuss some guiding principles,
then give a formal definition, then conclude with a discussion of the distortion of PPR and UPR.

Guiding principles. First, we would like to give an accurate ranking for every site, so our metric
should be mostly concerned with the maximum error at any site rather than the total error across
all sites. Note in particular that total variation distance from R(G) does not capture this well — a
total variation distance of 0.1 from R(G) could indicate anything from an additive error of 0.1/|VG |
at every vertex (a relatively minor error) to an additive error of 0.1 at a single vertex (a very severe
error).

Second, we should be concerned with multiplicative error rather than additive error. To see this,
suppose G = (V, E) ∈ G has 𝑛 vertices, let 𝑣1, 𝑣2 ∈ V, and suppose that 𝑣1 has reference rank 1/

√
𝑛

and 𝑣2 has reference rank 1/4. Then intuitively, assigning 𝑣1 a rank of 1/log𝑛 is a far more severe
mistake than assigning 𝑣2 a rank of 1/4 − 2/log𝑛, even though the additive error is smaller. Likewise,
assigning 𝑣2 a rank of 1/

√
𝑛 would be a far more severe mistake than assigning it a rank of 1/8, even

though the additive errors are comparable.
Third, multiplicative error is only significant when it causes us to make important mistakes in the

final site ranking. To illustrate what we mean by this, suppose our ranking function were to assign
rank 1/2𝑛/2 to a node 𝑣 whose reference rank is 1/2𝑛. This would constitute a huge multiplicative
error of 2𝑛/2. However, in practice, 1/2𝑛 and 1/2𝑛/2 are both so small as to be indistinguishable, so
this error is unlikely to have much of an impact on query rankings. In general, we can safely ignore
multiplicative error on vertices with “insignificant” reference rank as long as we still assign them
“insignificant” rank.

Formal definition. Let 𝛿 > 0. For all 𝑛-vertex graphs G = (V, E) ∈ G, all ranking vectors x̂ : V →
[0, 1], and all vertices 𝑣 ∈ V, define the stretch and contraction of x̂ on 𝑣 by

Stretch𝛿 (x̂,G, 𝑣) =
max{x̂[𝑣], 1/𝑛𝛿 }

max{R(G) [𝑣], 1/𝑛𝛿 }
Cont𝛿 (x̂,G, 𝑣) =

max{R(G) [𝑣], 1/𝑛𝛿 }
max{x̂[𝑣], 1/𝑛𝛿 }

.

We then define4 the distortion of x̂ on 𝑣 by

D𝛿 (x̂,G, 𝑣) = max{Stretch𝛿 (x̂,G, 𝑣), Cont𝛿 (x̂,G, 𝑣)},
and the distortion of x̂ on G by

D𝛿 (x̂,G) = max{D𝛿 (x̂,G, 𝑣) : 𝑣 ∈ V}.
We pause for a moment to map these definitions back onto our intuition. We take our reference

rank threshold for a vertex to be “significant” to be 1/𝑛𝛿 . Observe that if a vertex 𝑣 is significant, and
x̂ ranks it as significant, then the distortion of x̂ on 𝑣 is simply the approximation ratio between its
x̂-rank and its reference rank. The maxima in the definitions of Stretch and Cont capture the idea
that we should disregard any multiplicative error below the significance threshold. For example, if a

4The names of our accuracy metrics are taken from the theory of metric space embedding. In this theory, distortion is stretch
times contraction, but since we consider normalized ranking functions, we instead take the distortion to be the maximum of
the stretch and contraction.
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vertex is insignificant, and x̂ ranks it as insignificant, then the distortion of x̂ on 𝑣 is 1, i.e. as low as
possible.

It is natural to ask which vertices should we consider insignificant. That is, how should we choose
𝛿? It will turn out that for our purposes, it doesn’t actually matter — our main distortion bounds
hold for any choice of 𝛿 , so we leave this question to future work. Note, however, that since the total
reference rank is 1, any choice of 𝛿 < 1 will leave at most an 𝑛𝛿−1 = 𝑜 (1) proportion of nodes above
the significance threshold; for this reason we shall take 𝛿 ≥ 1.

Restricting to fast-mixing graphs. Before we discuss specific examples, we note the following
intuitive requirement for the output of any PageRank to have low distortion on its input graph G ∈ G:
After a reset, on average, the distribution of its random walk should have time to converge to R(G)
before the next reset. Thus for a reset vector r̂ and a reset probability Y to yield an effective PageRank
on G, the mixing time of the uniform random walk on G whose initial state is drawn from r̂ should
be less than 1/Y. As an example of what might otherwise go wrong, consider the case where G is
an 𝑛-vertex directed cycle — where unless r̂ is close to uniform, or Y is very small, the resulting
PageRank will be biased away from segments with low mass in r̂.

Fortunately, real networks are very often fast mixing (at least on the giant component). Experimen-
tal studies [Albert et al., 1999, Broder et al., 2000, Faloutsos et al., 1999] have demonstrated that
the degrees of the web graph are power-law distributed; Gkantsidis, Mihail and Saberi [Gkantsidis
et al., 2003] prove that 𝑛-vertex random power-law graphs have 𝑂 (log𝑛) mixing time [Gkantsidis
et al., 2003] with high probability. While power-law random graphs are of foundational importance,
there are many other models for random “web-like” graphs, including graphs such as the Facebook
graph, which may not admit a power-law degree distribution [Gjoka et al., 2010, Ugander et al.,
2011]. Among the most well-known such models are preferential attachment [Barabási and Albert,
1999], which exhibits 𝑂 (log𝑛) mixing time with high probability [Cooper and Frieze, 2007, Mihail
et al., 2006], and the Newman–Watts small world model [Newman and Watts, 1999], which exhibits
𝑂 (log2 𝑛) mixing time with high probability [Addario-Berry and Lei, 2012]. Fast mixing is also
a common assumption in the literature on defenses against Sybil attacks [Mohaisen et al., 2010,
Viswanath et al., 2011]. Some important models, such as random hyperbolic graphs [Krioukov et al.,
2010], do not exhibit worst-case fast mixing [Kiwi and Mitsche, 2018], though it is not known if
they have fast average-case mixing time.

Mohaisen, Yun and Kim [Mohaisen et al., 2010] offer an explanation for why some models exhibit
fast worst-case mixing and others do not, by characterizing two kinds of social networks: those in
which nodes are linked based on real acquaintance, such as DBLP, and those that do not have this
requirement, such as Facebook. They argue based on experimental evidence that DBLP-like networks
are slowly mixing compared to the Facebook-like networks in the worst case, but are nevertheless
still fast-mixing in the average case.

As we now show, PPR and UPR do not in general output low-distortion ranking vectors even
on very fast-mixing graphs, but a mixing time a little lower than 1/Y will suffice for Min-PPR (see
Section 5). For any function 𝑇 : N→ [0,∞), let

G𝑇 :=
{
G ∈ G : 𝜏G (1/4) ≤ 𝑇 ( |VG |)

}
.

PPR usually has high distortion. Consider PPR with center 𝑐 ∈ V and reset probability Y. Since the
PPR random walk resets to 𝑐 with probability Y at each step, we have R(G, 𝑐, Y) [𝑐] ≥ Y, so

D𝛿 (R(G, 𝑐, Y),G) ≥ Stretch𝛿 (R(G, 𝑐, Y),G, 𝑐) ≥ Y/max{R(G) [𝑐], 1/|VG |𝛿 }.
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Thus PPR has high distortion unless either Y is unrealistically small or 𝑐 happens to be a vertex
with extremely high reference rank. Indeed, since the total reference rank of G is 1, we obtain the
following.

OBSERVATION 5. Let 𝛿 ≥ 1, Y ∈ (0, 1), and 𝑡 ≤ Y𝑛𝛿 . Then for any 𝑛-vertex graph G ∈ G, there
are at most 𝑡/Y vertices 𝑐 ∈ VG such that D𝛿 (R(G, 𝑐, Y),G) ≤ 𝑡 .

Moreover, a clique is a simple example of an 𝑛-vertex graph on which the output of PPR has
distortion at least Y𝑛 for any choice of center. (Note that all cliques are contained in G1.) While there
do exist specific graphs and center choices for which the output of PPR has low distortion, we have
no reason to believe that these specific inputs are relevant for real-world use.

UPR can have high distortion. For any G ∈ G, 𝑣 ∈ V, and (𝑢, 𝑣) ∈ E, replacing (𝑢, 𝑣) with a
suitably large collection of internally vertex-disjoint two-edge paths from 𝑢 to 𝑣 inflates R(G, û, Y) [𝑣]
to a near-arbitrary extent while leaving R(G) [𝑣] almost unchanged. This construction does not
significantly affect the mixing time of G, so we conclude the following.

OBSERVATION 6. Let 𝛿 ≥ 1 and Y ∈ (0, 1). Then there exist infinitely many graphs G = (V, E) ∈
G4 with D𝛿 (R(G, û, Y),G) ≥ 1

2Y (1 − Y) |VG |𝛿 .

5 MIN-PPR HAS LOW DISTORTION AND HIGH SPAM RESISTANCE
In this section, we introduce Min-PPR, which is the idea that ranks should be determined by running
PPR multiple times, with different trusted centers. Recall that this is the actual version of PageRank
used in Google. The rank of a site 𝑤 should be the minimum of the ranks that result (appropriately
normalised). We will show how to turn the Min-PPR idea into a family of ranking algorithms,
T-Min-PPR𝑘,Y , as Min-PPR on 𝑘 trusted centers with reset probability Y, though we will need some
constraints on how the centers are selected. We then outline the theorems needed to establish that it
has low distortion and high spam resistance. These theorems are proven in Appendices A and B.

Specifically, we will show that, given a small enough Y and a large enough 𝑘, T-Min-PPR𝑘,Y is
(Y/3𝑘)-spam resistant. It turns out (see the discussion following the statement of Theorem 11) that
T-PPRY is Y-spam resistant but not (2Y)-spam resistant. Thus, we see that T-Min-PPR𝑘,Y resists spam
almost as well as T-PPRY . Moreover, we prove that there are many possible choices of TG such that
T-Min-PPR𝑘,Y (G,TG) has 1+𝑜 (1) distortion, so that T-Min-PPR𝑘,Y is accurate on the pre-spam graph.
Finally, we will show that T-Min-PPR𝑘,Y is a PageRank, by the closure properties of PageRank that
we establish below. Hence, it fits neatly into the existing methods and heuristics of the field.

Defining T-Min-PPR. In order to compute Rmin (G,K, Y), we choose an arbitrary subset K of T of
size min{𝑘, |T|} which does not depend on G and output

Rmin (G,K, Y) [𝑤] = ⌈⌈min{R(G, 𝑐, Y) [𝑤] : 𝑐 ∈ K}⌋⌋ .
There is a technical difficulty here: if G has been disconnected by the spammer and the centers K are
badly chosen, it might be that for all vertices 𝑤 we have min{R(G, 𝑐, Y) [𝑤] : 𝑐 ∈ K} = 0, in which
case the normalisation above is invalid and Rmin (G,K, Y) does not output a ranking vector. To deal
with this, we introduce the following technical restriction.

DEFINITION 7. Let G = (V, E) be a (directed) graph and let K ⊆ V. We say that K is coherent if it
is non-empty and, for some 𝑤 ∈ V, there is a path in G from each vertex in K to 𝑤 .

If G ∈ G then every non-empty subset of V is coherent, but to turn Definition 7 into a family of
ranking algorithms we must consider what happens if the spammer breaks this coherence. For each
positive integer 𝑘 and each real number Y ∈ (0, 1), we now define the ranking algorithm T-Min-PPR𝑘,Y

as follows. (As in T-PPRY , the “T” stands for “trusted”.)
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Let G = (V, E) be a graph and let T ⊆ V be a non-empty set of trusted nodes. The algorithm
chooses an arbitrary subset K of T of size min{𝑘, |T|} which does not depend on G. It then chooses
an arbitrary maximum-size set K′ ⊆ K which is coherent in G, and outputs Rmin (G,K′, Y). (Note that
some choice of K′ must exist, since any 1-vertex set is coherent, and that we have K′ = K unless the
spammer has disrupted the coherence of K.)

Perhaps surprisingly, the output of T-Min-PPR𝑘,Y is not just a normalized minimum of PageRanks,
but a PageRank in itself.

LEMMA 8. Let G = (V, E) be a graph, let Y ∈ (0, 1), and let K ⊆ V be coherent. Then there exists
a reset vector r̂ such that Rmin (G,K, Y) = R(G, r̂, Y).

In fact, we prove a stronger result as Theorem 18: the class of PageRanks is closed under
normalized component-wise min whenever the component-wise min is not identically zero.

Min-PPR has low distortion. Our first result says that on suitably fast-mixing graphs, any PageRank
has low contraction.

LEMMA 9. Let 𝛿 > 0, let Y ∈ (0, 1), and let 𝑇 (𝑛) be any function such that, for all 𝑛,

0 ≤ 𝑇 (𝑛) ≤ 1/(2Y (3 + 𝛿 log2 𝑛)).

Then for all 𝑛-vertex graphs G ∈ G𝑇 , all reset vectors r̂ on G, and all 𝑦 ∈ VG, we have
Cont𝛿 (R(G, r̂, Y),G, 𝑦) ≤ 1 + 2Y𝑇 (𝑛) (3 + 𝛿 log2 𝑛).

Lemma 9 confirms our intuition about the behavior of PPR: On fast-mixing graphs, its inaccuracy
is solely the result of a large spike of bias around its trusted center, which Min-PPR can correct for.
We will use this result in our analysis of Min-PPR. As a corollary (see Theorem 26), we see that any
PageRank has total variation distance at most Y𝑇 (𝑛) (3 + log2 𝑛) from R(G).

We cannot hope for Rmin (G,K, Y) to have low distortion for an arbitrary (coherent) choice of K,
since, if the vertices of K are clustered together, then their distortion spikes may overlap and cause
Min-PPR to suffer the same distortion as PPR. But it is nevertheless true that good choices of K are
very common and easy to find.

THEOREM 10 (MAIN RESULT). Let 𝛿 ≥ 1. Let Y ∈ (0, 1) and let 𝑇 (𝑛) ≤ 1/(210Y𝛿 log2 𝑛). Let
G ∈ G be an 𝑛-vertex graph with 𝑛 ≥ 3, and suppose that the worst-case mixing time of 𝐺 is at
most 𝑇 (𝑛). Let 𝑘 ≥ 1, let r̂ be an arbitrary reset vector, let 𝑋1, . . . , 𝑋𝑘 be drawn independently from
VG with probabilities given by R(G, r̂, Y), and let K = {𝑋1, . . . , 𝑋𝑘 }. Then with probability at least
1−4−𝑘𝑛, the distortion of T-Min-PPR𝑘,Y (G,K) satisfies D𝛿 (Rmin (G,K, Y),G) ≤ 1+210Y𝛿𝑇 (𝑛) log2 𝑛.

Thus according to R(G), UPR, or any other PageRank, Θ(log𝑛)-sized sets of centers giving rise
to accurate Min-PPR’s are very common. (The reason we can afford to be so flexible in our choice of
distribution is that all PageRanks are close in total variation distance, as stated above.) Note that the
dependence of Theorem 10 on our significance parameter 𝛿 is very mild.

Recall that Theorem 10 requires fast worst-case mixing, i.e. that the uniform random walk mixes
quickly from every vertex in G. While this is a common assumption, as discussed in Section 4, some
web-like graphs may exhibit only fast average-case mixing. For this reason, as Theorem 31, we prove
a version of Theorem 10 which requires only fast average-case mixing from our chosen centers.
We prove the result by altering T-Min-PPR𝑘,Y to use only a carefully-chosen subset of the trusted
vertices.

T-Min-PPR has high spam resistance. As noted above, Min-PPR has zero spam resistance by
Observation 2. T-Min-PPR, however, is highly spam resistant.
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THEOREM 11 (MAIN RESULT). For any Y ∈ (0, 1) and any positive integer 𝑘 , T-Min-PPR𝑘,Y is
(Y/3𝑘)-spam resistant on 𝑛-vertex graphs in G with worst-case mixing time at most 1/(3Y (3+ log2 𝑛)).
A cost function that establishes this spam resistance is the average of the cost functions of the
component T-PPRs.

Recall from Lemma 3 that T-PPRY is at least Y-spam resistant on all graph classes, and recall
from Observation 4 that this is close to tight even on fast-mixing graphs — for example, T-PPRY

is not (1.01Y/(1 − Y))-spam resistant even on the class of cliques, which is contained in G1. Since
Theorem 11 shows that T-Min-PPR𝑘,Y is (Y/3𝑘)-spam resistant on suitably fast-mixing graphs, we
conclude that in this setting T-Min-PPR𝑘,Y inherits most of the spam resistance of T-PPRY .

Min versus Median. It is natural to ask whether, instead of taking the normalized component-wise
minimum of our PPRs, we could take the normalized component-wise median. We show that Min-
PPR has a crucial advantage over Median-PPR: The normalized minimum of any set of PageRanks
with reset probability Y is itself a PageRank with reset probability Y, whereas the normalized median
of any set of PageRanks with reset probability Y is a PageRank with possibly much larger Y.

This preservation of Y is important, as without it the closure condition that we introduce in the next
section to show that T-Min-PPR𝑘,Y is a PageRank would be so weak as to be useless. Notice that, as
the reset probability is allowed to become arbitrarily large, the resulting PageRank will approach the
reset vector, with little contribution from the underlying graph — indeed, we show that any strictly
positive vector whose entries sum to 1 is a PageRank.

In Section 6, we make a distinction between operators that are strongly closed, which means they
preserve the reset probability, and those that are weakly closed, which means that they might not.
We give simple necessary and sufficient conditions for a vector to be a PageRank with a given reset
probability, and show that min is strongly closed for PageRank (Theorem 18), whereas median is
only weakly closed (Lemma 20 and 21). Indeed, the reset probability of Median-PPR may be as high
as 1/2 even when Y is arbitrarily small.

Summary. Overall, suppose that our 𝑛-vertex pre-spam graph G lies in Gpolylog(𝑛) . Choose our
significance threshold 1/𝑛𝛿 arbitrarily subject to 𝛿 ≥ 1, and take 𝑘 = Θ(log𝑛) and Y = 1/polylog(𝑛).
(This requires a rough estimate of 𝑛, but this should not be a major obstacle in practice.) Then
Theorem 11 implies that T-Min-PPR𝑘,Y is (Y/3𝑘)-spam resistant, so that for all possible choices of
TG ⊆ VG and all possible spam graphs H, T-Min-PPR𝑘,Y (H,TG) does not award a disproportionate
amount of rank to the spammer.

In this setting, T-PPRY is Y-spam resistant but not (2Y)-spam resistant, so we see that T-Min-PPR𝑘,Y

resists spam almost as well as T-PPRY . Moreover, Theorem 10 implies that there are many possible
choices of TG such that T-Min-PPR𝑘,Y (G,TG) has 1 + 𝑜 (1) distortion, so that T-Min-PPR𝑘,Y is
accurate on the pre-spam graph. Thus T-Min-PPR𝑘,Y performs far better than T-PPRY , which can have
distortion Ω(𝑛) for all choices of TG, or even worst-case UPRY , which can have distortion Ω(𝑛𝛿 ).
Finally, T-Min-PPR is a PageRank by Lemma 8. We therefore believe that T-Min-PPR is a promising
new ranking algorithm that warrants significant further study.

6 PAGERANK CLOSURE
In this section, we first introduce notation and make some preliminary observations about PageRank.
We then show that PageRank is closed under normalized component-wise min. Finally, we show that
PageRank is not closed under all functions, and in particular that it is not closed under median.
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6.1 PageRank Preliminaries
Recall that (G, r̂, Y) is the random walk associated with PageRank on G with reset vector r̂ and reset
probability Y. The transition probability matrix, A, of this walk is

A = (1 − Y)M + YR, (1)

where M and R denote 𝑛 × 𝑛 matrices as follows:

∀𝑢, 𝑣 ∈ V : M[𝑢, 𝑣] =
{
1/|𝑁out (𝑢) | if (𝑢, 𝑣) ∈ E,
0 otherwise,

R[𝑢, 𝑣] = r̂[𝑣] .

For instance, if r̂ is the uniform reset vector û, then R[𝑢, 𝑣] = 1/𝑛 for all 𝑢, 𝑣 ∈ V.
Brin and Page noted that R(G, û, Y) is total, that is, it is defined and unique for any graph G and

any Y ∈ (0, 1). We observe the following more general folklore lemma for PageRanks.

LEMMA 12. R(G, r̂, Y) is defined and unique for any graph G = (V, E), reset vector r̂, and reset
probability Y ∈ (0, 1).

PROOF. Let Vr̂ be the support of r̂. Notice that these nodes belong to a single strongly connected
component in the walk (G, r̂, Y) consisting of the nodes reachable from Vr̂. These nodes form a unique
essential communicating class5 in the Markov chain of the random walk on A. By Proposition 1.26
in [Levin et al., 2009], such a Markov chain has a unique stationary distribution. □

A similar claim was proved in [Andersen et al., 2006], but for undirected graphs. For directed
graphs, as in our case, R(G, r̂, Y) has weight 0 on all nodes not reachable from a node in Vr̂. We will
also need one more ancillary lemma.

LEMMA 13. Let G = (V, E) be an arbitrary graph, let 0 < Y < 1, and let r̂ be a reset vector. Let
(𝑌𝑡 )𝑡≥0 be the uniform random walk on G with random initial state drawn from r̂. Then for all 𝑣 ∈ V,
we have

R(G, r̂, Y) [𝑣] = Y

∞∑︁
𝑖=0

(1 − Y)𝑖P(𝑌𝑖 = 𝑣).

PROOF. Follows from Equation 5 in [Jeh and Widom, 2003] and linearity of expectation. □

For all Y ∈ (0, 1), we denote the set of all possible PageRanks for G with reset probability Y

by PY (G) = {R(G, r̂, Y) : r̂ is a ranking vector}. (Recall from Section 3 that a ranking vector on
G = (V, E) is any function x̂ : V → [0, 1] with

∑
𝑣∈V x̂[𝑣] = 1.) We denote the set of all possible

PageRanks for G with any reset probability by P(G) = {R(G, r̂, Y) : r̂ is a ranking vector, Y ∈ (0, 1)}.
We now set out a necessary and sufficient condition for a ranking vector to be a PageRank with a

given reset probability. For all graphs G = (V, E), all ranking vectors p̂ on G, and all Y ∈ (0, 1), define

R−1 (G, p̂, Y) [𝑣] := p̂[𝑣]
Y

− 1 − Y

Y

∑︁
𝑤∈𝑁in (𝑣)

p̂[𝑤]
𝑑out (𝑤) for all 𝑣 ∈ V.

LEMMA 14. Let G = (V, E) be a graph, let Y ∈ (0, 1), and let p̂ be a ranking vector on G. If
p̂ = R(G, r̂, Y) for some r̂, then r̂ = R−1 (G, p̂, Y). Moreover, p̂ ∈ PY (G) if and only if R−1 (G, p̂, Y) ≥ 0.

5States 𝑖 and 𝑗 of a Markov chain belong to the same communicating class if there is a positive probability of moving to state
𝑗 from state 𝑖, and a positive probability of moving to state 𝑖 from state 𝑗 .
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PROOF. First suppose that p̂ = R(G, r̂, Y) for some r̂. Let M be the transition matrix of a uniform
random walk on G whose initial state is given by r̂, and let R be the |V| × |V| matrix whose rows are
given by r̂. By definition, p̂ is the unique (row) vector satisfying p̂ = p̂(YR + (1 − Y)M). Equivalently,
p̂ is the unique vector such that for all 𝑣 ∈ V,

p̂[𝑣] = Y
∑︁
𝑤∈V

p̂[𝑤]r̂[𝑣] + (1 − Y)
∑︁
𝑤∈V

p̂[𝑤]M[𝑤, 𝑣] = Y r̂[𝑣] + (1 − Y)
∑︁

𝑤∈𝑁in (𝑣)

p̂[𝑤]
𝑑out (𝑤) . (2)

Rearranging, we obtain r̂[𝑣] = R−1 (G, p̂, Y) [𝑣], and so r̂ = R−1 (G, p̂, Y) as required. This also implies
that if p̂ ∈ PY , then R−1 (G, p̂, Y) ≥ 0.

Suppose now that R−1 (G, p̂, Y) ≥ 0. We have

| |R−1 (G, p̂, Y) | | = 1
Y
− 1 − Y

Y

∑︁
𝑣∈V

∑︁
𝑤∈𝑁in (𝑣)

p̂[𝑤]
𝑑out (𝑤) =

1
Y
− 1 − Y

Y

∑︁
𝑤∈V

∑︁
𝑣∈𝑁out (𝑤 )

p̂[𝑤]
𝑑out (𝑤) =

1
Y
− 1 − Y

Y
= 1,

so R−1 (G, p̂, Y) is a ranking vector on G. Moreover, taking r̂ = R−1 (G, p̂, Y), for all 𝑣 ∈ V we have

Y r̂[𝑣] + (1 − Y)
∑︁

𝑤∈𝑁in (𝑣)

p̂[𝑤]
𝑑out (𝑤) = p̂[𝑣] − (1 − Y)

∑︁
𝑤∈𝑁in (𝑣)

p̂[𝑤]
𝑑out (𝑤) + (1 − Y)

∑︁
𝑤∈𝑁in (𝑣)

p̂[𝑤]
𝑑out (𝑤) = p̂[𝑣] .

Hence by (2), we have p̂ = R(G, r̂, Y), and in particular p̂ ∈ PY (G). □

Next, using Lemma 14, we set out a simple necessary and sufficient condition for a ranking vector
to be a PageRank at all.

LEMMA 15. Let G = (V, E) be a graph, and let p̂ be a ranking vector on G. Then p̂ ∈ P(G) if
and only if for all (𝑣,𝑤) ∈ E, if p̂[𝑣] > 0, then p̂[𝑤] > 0.

PROOF. Suppose p̂ ∈ P(G) with p̂ = R(G, r̂, Y), let 𝑣 ∈ V, and suppose p̂[𝑣] > 0. Then for all
𝑤 ∈ 𝑁out (𝑣), the PageRank random walk associated with p̂ transitions from 𝑣 to 𝑤 with probability
at least (1 − Y)/|𝑁out (𝑣) | > 0, so we must have p̂[𝑤] > 0.

Conversely, let p̂ be a ranking vector on G, and suppose that p̂ satisfies the condition that for all
(𝑣,𝑤) ∈ E, if p̂[𝑣] > 0, then p̂[𝑤] > 0. For all 𝑣 ∈ V, let

Σ𝑣 :=
∑︁

𝑤∈𝑁in (𝑣)

p̂[𝑤]
|𝑁out (𝑤) | , 𝑥𝑣 :=

{
1 − p̂[𝑣]/Σ𝑣 if Σ𝑣 ≠ 0,
0 otherwise,

and let Y = max({1/2} ∪ {𝑥𝑣 : 𝑣 ∈ V}). We now show that p̂ ∈ PY (G) by showing that Y ∈ (0, 1), that
R−1 (G, p̂, Y) ≥ 0, and applying Lemma 14.

By definition, Y ≥ 1/2 > 0. For all 𝑣 ∈ V with Σ𝑣 ≠ 0, there must exist 𝑤 ∈ 𝑁in (𝑣) with p̂[𝑤] > 0,
so by hypothesis we have p̂[𝑣] > 0; hence 𝑥𝑣 < 1. When Σ𝑣 = 0 we have 𝑥𝑣 = 0 < 1 by definition, so
it follows that Y < 1; hence Y ∈ (0, 1).

Now let 𝑣 ∈ V. If Σ𝑣 = 0, then R−1 (G, p̂, Y) [𝑣] = p̂[𝑣]/Y ≥ 0. If instead Σ𝑣 > 0, then we have

R−1 (G, p̂, Y) [𝑣] ≥ 1
Y
p̂[𝑣] − 1 − 𝑥𝑣

Y
Σ𝑣 = 0.

Thus R−1 (G, p̂, Y) ≥ 0, so it follows by Lemma 14 that p̂ ∈ PY (G). In particular, p̂ ∈ P(G) as
required. □

In Lemma 17, we enumerate the possible realizations of a given ranking vector as a PageRank;
before proving this, we introduce an ancillary lemma.

LEMMA 16. Let G = (V, E) be a graph, let p̂ ∈ P(G), let r̂ be a ranking vector on G, and suppose
there exists Y ∈ (0, 1) such that p̂ = R(G, r̂, Y). Then exactly one of the following holds:
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(1) there exists 𝑣 ∈ V such that r̂[𝑣] ≠ (p̂M) [𝑣], in which case

Y =
p̂[𝑣] − (p̂M) [𝑣]
r̂[𝑣] − (p̂M) [𝑣] ; or

(2) r̂ = p̂ = p̂M, in which case p̂ = R(G, r̂, [) for all [ ∈ (0, 1).

PROOF. First suppose there exists 𝑣 ∈ V such that r̂[𝑣] ≠ (p̂M) [𝑣]. By Lemma 14, we have

r̂[𝑣] = R−1 (G, p̂, Y) [𝑣] = p̂[𝑣]
Y

− 1 − Y

Y
(p̂M) [𝑣] .

Rearranging, we obtain

Y =
p̂[𝑣] − (p̂M) [𝑣]
r̂[𝑣] − (p̂M) [𝑣] ,

as required.
If no such 𝑣 ∈ V exists, then we must have r̂ = p̂M. Since p̂ is a PageRank, it follows that

p̂ = p̂A = p̂
(
(1 − Y)M + YR

)
= (1 − Y)r̂ + Y r̂ = r̂,

so r̂ = p̂. Since r̂ = p̂M, it follows that r̂ = p̂ = p̂M as required. Finally, for all [ ∈ (0, 1), we have

p̂
(
(1 − [)M + [R

)
= (1 − [)p̂M + [r̂ = p̂,

so p̂ = R(G, r̂, [) as required. □

LEMMA 17. Let G = (V, E) be a graph, and let p̂ ∈ P(G). Let X be the set of all pairs (r̂, Y) such
that p̂ = R(G, r̂, Y). If p̂M = p̂, then we have X = {(p̂, Y) : Y ∈ (0, 1)}; otherwise, we have

X = {(R−1 (G, p̂, Y), Y) : R−1 (G, p̂, Y) ≥ 0}.

PROOF. Immediate from Lemmas 14 and 16. □

6.2 PageRank Closure Definitions
Let 𝑔 be a function that takes a finite set of PageRanks on a graph G and returns a ranking vector for
G. We say that 𝑔 is weakly closed on PageRanks if, for any graph G and any finite set Q ⊂ P(G), we
have 𝑔(Q) ∈ P(G).

The reason we call this type of closure “weak” is that by Lemma 15, being a PageRank imposes
only a mild condition satisfied by e.g. any vector with no zero entries. The reason this mild condition
suffices is that the reset probability, Y, may be arbitrarily close to 1. If PageRank is to capture any
graph structure, as opposed to simply approximating the reset vector, then Y needs to be well below,
say, 1/2.

Therefore, we define 𝑔 to be strongly closed on PageRanks if, for all graphs G, all Y ∈ (0, 1), and
all finite sets Q ⊂ PY (G), we have 𝑔(Q) ∈ PY (G). That is, strong closure implies that the operator
produces a PageRank without changing Y.

In the following two sections, we demonstrate that min is strongly closed for PageRanks, whereas
median is only weakly closed.

6.3 Strongly Closed Operators
In this section, we show that PageRank is strongly closed under the normalized component-wise min
operator and prove Theorem 18, which implies Theorem 8.

THEOREM 18. Let G = (V, E) be a graph, let Y ∈ (0, 1), and suppose x̂1, . . . , x̂𝑘 ∈ PY (G). For all
𝑣 ∈ V, let y[𝑣] = min{x̂1, . . . , x̂𝑘 }[𝑣], suppose y ≠ 0, and let ŷ = y/| |y| | . Then ŷ ∈ PY (G).

, Vol. 1, No. 1, Article . Publication date: May 2023.



Graph Ranking and the Cost of Sybil Defense

PROOF. First note that ŷ is a ranking vector for G. Let 𝑣 ∈ V. Then for all 𝑖 ∈ [𝑘], since
x̂𝑖 ∈ PY (G), by Lemma 14 we have

R−1 (G, x̂𝑖 , Y) [𝑣] =
x̂𝑖 [𝑣]
Y

− 1 − Y

Y

∑︁
𝑤∈𝑁in (𝑣)

x̂𝑖 [𝑤]
𝑑out (𝑤) ≥ 0. (3)

For all 𝑣 ∈ V, we have y[𝑣] = x̂𝑗 [𝑣] for some 𝑗 ∈ [𝑘], and y[𝑤] ≤ x̂𝑗 [𝑤] for all 𝑤 ∈ 𝑁in (𝑣). It
follows from (3) that

y[𝑣]
Y

− 1 − Y

Y

∑︁
𝑤∈𝑁in (𝑣)

y[𝑤]
𝑑out (𝑤) ≥ 0,

and hence R−1 (G, ŷ, Y) [𝑣] ≥ 0. Thus R−1 (G, ŷ, Y) ≥ 0, so by Lemma 14 we have ŷ ∈ PY (G). □

Recall from Section 5 that for any graph G = (V, E), any Y ∈ (0, 1), and any coherent set K ⊆ V,
we have min{R(G, 𝑥, Y) : 𝑥 ∈ K} ≠ 0. Thus Theorem 18 implies that Rmin (G,K, Y) ∈ PY (G), so
Lemma 8 follows.

6.4 Weakly Closed Operators
In this section we show that median is weakly closed, but not strongly closed, over PageRanks. We
first define the median operator on vectors by component-wise median, so that for vectors x1, . . . , xk,

median{x1, . . . , xk}[𝑖] = median{x1 [𝑖], . . . , xk [𝑖]}.
We now formally define the median operator on ranking vectors. The normalized component-wise
median of PageRanks may not be well-defined as the median might be identically zero. Therefore,
we add a condition to the definition to avoid those cases.

DEFINITION 19. Let G = (V, E) be a graph and let X = {x̂1, . . . , x̂𝑘 } such that x̂𝑖 ∈ P(G) for
every 𝑖 = 1, . . . , 𝑘 and | |median{x̂i : x̂𝑖 ∈ X}| | > 0. Then, we define the Median operator as

Rmed (G,X) = ⌈⌈median{x̂i : x̂𝑖 ∈ X}⌋⌋

The following theorem says that not only is the median operator not strongly closed, but that the
property fails badly — in general, we cannot express the normalized component-wise median of
even low-reset-probability PPRs as a PageRank without using a reset probability greater than 1/2.

LEMMA 20. Let Y ∈ (0, 1). Then there exist infinitely many graphs G = (V, E) and sets of PPRs
X = {x̂1, . . . , x̂𝑘 } such that x̂1, . . . , x̂𝑘 ∈ PY (G) and | |median{x̂1, . . . , x̂𝑘 }| | > 0, but Rmed (G,X) ∉

PY (G). Moreover, Rmed (G,X) ∉ P[ (G) for any [ ≤ 1/2.

PROOF. Let 𝑘 be any odd integer satisfying 𝑘 ≥ 3 and 𝑘 > (1−Y)/Y, and write 𝑘 =: 2ℓ+1. Consider
the graph in Figure 1, where each node 𝑢𝑖 is connected to the ℓ +1 nodes 𝑣𝑖 , 𝑣 (𝑖+1) mod𝑘 , . . . , 𝑣 (𝑖+ℓ ) mod𝑘 .
For all 𝑖 ∈ [𝑘], we define x̂𝑖 := R(G, 𝑢𝑖 , Y). Thus the reset vector r̂x̂𝑖 of x̂𝑖 satisfies r̂x̂𝑖 [𝑢𝑖 ] = 1 and
r̂x̂𝑖 [𝑣] = 0 for all 𝑣 ≠ 𝑢𝑖 . By Lemma 13, we have

x̂𝑖 [𝑣 𝑗 ] =
{
Y (1 − Y)/(ℓ + 1) if 𝑢𝑖 ∈ 𝑁in (𝑣 𝑗 ),
0 otherwise,

x̂𝑖 [𝑦1] = Y (1 − Y)2 . (4)

For brevity, write 𝑎 = | |median{x̂1, . . . , x̂𝑘 }| |, and note that 𝑎 > 0. Since ℓ + 1 > 𝑘/2, it follows
from (4) that

Rmed (G,X) [𝑣 𝑗 ] = Y (1 − Y)/(𝑎(ℓ + 1)) for all 𝑗 ∈ [𝑘],
Rmed (G,X) [𝑦1] = Y (1 − Y)2/𝑎.
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Now let [ ∈ (0, 1). By Lemma 14, whenever R−1 (G,Rmed (G,X), [) [𝑦1] < 0, we have
Rmed (G,X) ∉ P[ (G). By the definition of R−1, we have

R−1 (G,Rmed (G,X), [
)
[𝑦1] =

Y (1 − Y)2
[𝑎

− 1 − [

[
𝑘
Y (1 − Y)
𝑎(ℓ + 1) =

Y (1 − Y)
[𝑎

(
1 − Y − (1 − [)𝑘

ℓ + 1

)
.

Thus Rmed (G,X) ∉ P[ (G) whenever 1 − [ > (1 − Y) (ℓ + 1)/𝑘 , which holds if and only if

[ <
𝑘 − ℓ − 1 + Yℓ + Y

𝑘
=
1 + Y

2
− 1 − Y

2𝑘
. (5)

Since 𝑘 ≥ 3, (5) holds when [ = Y, and since 𝑘 > (1 − Y)/Y, (5) holds for all [ ≤ 1/2. The result
therefore follows. □

Fig. 1. Illustration of weak closure of median.

Finally we show that Median is weakly closed over PageRanks. Thus taking a median of PageRanks
always yields a PageRank, but perhaps one with a much higher reset probability.

LEMMA 21. [Median is weakly closed over PageRanks ] Let G = (V, E) be a graph and let
X = {x̂1, . . . , x̂2ℓ+1}, where x̂𝑖 ∈ P(G) for every 𝑖 = 1, . . . , 2ℓ+1. Suppose | |median{x̂i : x̂𝑖 ∈ X}| | > 0.
Then, Rmed (G,X) ∈ P(G).

PROOF. Let Rmed (V,X) = ŷ, and let 𝑣 ∈ V with ŷ[𝑣] > 0. Then y[𝑣] > 0, so there exist
𝑖1, . . . , 𝑖ℓ+1 with x̂𝑖1 [𝑣], . . . , x̂𝑖ℓ+1 [𝑣] > 0. Since x̂1, . . . , x̂2ℓ+1 ∈ P(G), by Lemma 15 it follows that for
all 𝑤 ∈ 𝑁out (𝑣), we have x̂𝑖1 [𝑤], . . . , x̂𝑖ℓ+1 [𝑤] > 0. Hence by construction we have y[𝑤] > 0 and
therefore ŷ[𝑤] > 0 for all 𝑤 ∈ 𝑁out (𝑣). It follows by Lemma 15 that ŷ ∈ P(G). □

7 RELATED WORK
Originally, and most famously, PageRank was used by Google as a ranking function for web
pages [Google, 2001], but since then, it has been used to analyze networks of neurons [Fletcher and
Wennekers, 2016], Twitter recommendation systems [Gupta et al., 2013], protein networks [Iván and
Grolmusz, 2010], etc. (See [Gleich, 2015] for a survey of non-web uses).
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As noted above, PageRank is susceptible to link spam. Thus, other ranking functions have been pro-
posed [Bhattacharjee and Goel, 2006, Gyöngyi et al., 2004, Kumar et al., 2006]. TrustRank [Gyöngyi
et al., 2004] for example is based on assigning higher reputation to a subset of pages curated by an
expert, and the assumption that pages linked from these reputable pages are reputable as well. A
similar method can be applied for low reputation pages, which is called Anti-Trust Rank [Krishnan
and Raj, 2006]. In both, reliability lowers as distance from the reference pages increases.

Other work is geared towards modifications of the PageRank mechanism. For instance, Global
Hitting Time [Hopcroft and Sheldon, 2008] was designed as a transformation of PageRank to counter
cross-reference link spam, where nodes link each other to increase their rank, but it still suffers if the
number of spammers is large. Variants include Personalized Hitting Time [Liu et al., 2016].

Despite the progress on other ranking mechanisms, PageRank still stands as the most popular [Stat-
Counter, [n. d.]] ranking function, and therefore the most attractive for link-spammers. Google
discouraged PageRank manipulation through the buying of highly ranked links by social methods:
they have announced that pages discovered to participate in such activity will be left out of the
PageRank calculation (hence, their rank lowered), they have encouraged the public to notify Google
about such pages [Google, [n. d.]].

Other research has focused on link-spam detection [Gyongyi et al., 2006] and quantifying the rank
increase obtained by creating Sybil pages [Cheng and Friedman, 2006]. For instance, an algorithm
to detect spam analyzing the supporting sets, i.e. the sets of nodes that contribute the most to the
PageRank of a given vertex, was presented in [Andersen et al., 2008]. The performance evaluation is
experimental. Detection methods for Sybil pages attacks have been surveyed in [Alvisi et al., 2014,
Yu, 2011]. Some of those methods [Yu et al., 2010, 2008] are based on detecting abnormal random
walk mixing times for what is expected in an “honest” network. Link-spam detection may be useful
for excluding pages from the PageRank calculation, but it is better to render an attack futile than to
build a fortress. That is, it is better to develop techniques that yield PageRank spam resistant. Towards
that end, some work limits or assign reset probability selectively [Fogaras et al., 2005, Gyöngyi et al.,
2004]. These approaches are generalizations of Personalized PageRank [Jeh and Widom, 2003].

For graph-theoretic ranking functions, such as Hubs & Authorities (HITS) and PageRank, for-
malizations of how stable they are in face of small perturbations exist [Ng et al., 2001a,b]. Stability
refers to how sensitive eigenvector methods such as HITS and PageRank are to small changes in the
link structure, and the cost of introducing such perturbations is not considered. Spammability, on the
other hand, is a different metric because it relates the cost of perturbations to the gains obtained by
those introducing them.

Specifically for HITS on a graph with adjacency matrix 𝐴, the authors in [Ng et al., 2001a,b] relate
an upper bound on the number of links that may be added (or deleted), given as a function of the
maximum out-degree and the eigengap of 𝐴𝑇𝐴, to an upper bound on the change of the principal
eigenvector of 𝐴𝑇𝐴 that those link changes produce. The result characterizes stability because HITS
uses the principal eigenvector of 𝐴𝑇𝐴 to determine authorities. The authors also show the existence
of graphs where a small perturbation (e.g. adding a single link) has a large effect.

For uniform PageRank, in [Ng et al., 2001a,b] they upper bound the aggregated change in rank
over all pages (ℓ1-norm) by a 2/Y factor of the sum of the original rank of the pages whose out-links
were changed, where Y is the reset probability. Considering rank as a measure of cost, this result can
be seen as relating the overall impact on the system to the cost of introducing changes, but it does not
relate to the increase in rank for those nodes. That is, it characterizes stability but not spammability.
Moreover, uniform PageRank under this cost measure can be spammed for free by simply creating
new nodes, and non-uniform reset vectors are not considered.

As expected, personalized PageRank is biased towards the vicinity of the trusted node. This
undesired effect can be compensated for to some extent by concentrating reset probability on a subset
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of nodes rather than one (as in [Fogaras et al., 2005, Gyöngyi et al., 2004]). Indeed, the approach
has been successful for particular areas where the search space is relatively small (e.g. in Linguistic
Knowledge Builder graph [Agirre and Soroa, 2009], Social Networks [Bahmani et al., 2010, Jin
et al., 2012], and Protein Interaction Networks [Iván and Grolmusz, 2010]). But the scale of the web
graph may require a large set of trusted pages for a general purpose PageRank.
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APPENDIX
A DISTORTION OF MIN-PPR
We first set out notation for mixing times from specific initial states. Let G ∈ G, let r̂ be a probability
distribution on V, let 𝑋 ∼ r̂, and let p̂𝑖,r̂ be the distribution of the uniform random walk on G at time
𝑖 ≥ 0 from initial state 𝑋 . Then for all 𝜌 > 0, we define

𝜏G (𝜌, r̂) := min
{
𝑖 ≥ 0 : 𝑑TV

(
p̂𝑖,r̂, R(G)

)
≤ 𝜌

}
.

In the special case where r̂ is deterministic, i.e. there exists 𝑥 ∈ V such that r̂[𝑥] = 1, we write
𝜏G (𝜌, 𝑥) := 𝜏G (𝜌, r̂). We take the default value of 𝜌 to be 1/4, so that 𝜏G := 𝜏G (1/4), 𝜏G (𝑥) :=
𝜏G (1/4, 𝑥) and 𝜏G (r̂) := 𝜏G (1/4, r̂). We also define emtG (r̂) := E𝑋∼r̂ (𝜏G (𝑋 )), where “emt” stands for
“expected mixing time”. For all positive integers 𝑘 we will write [𝑘] = {1, . . . , 𝑘}.

We now state some well-known preliminary lemmas.

LEMMA 22 ([HAVELIWALA, 2003, EQ 10]). Let G be an arbitrary graph, and let r̂ be a reset
vector on G. Then for all 𝑦 ∈ VG, R(G, r̂, Y) [𝑦] = ∑

𝑥∈VG r̂[𝑥]R(G, 𝑥, Y) [𝑦].

LEMMA 23. Let G ∈ G, let 𝜌 ∈ (0, 1), and let r̂ be a reset vector on G. Then 𝜏G (𝜌, r̂) ≤
⌈log2 (1/𝜌)⌉𝜏G (r̂).

PROOF. This is immediate from [Mitzenmacher and Upfal, 2005, Theorem 11.6], taking 𝑃 to be
the transition matrix of the random walk associated with R(G, r̂, Y) and 𝑐 to be 1/4. □

LEMMA 24 ([MITZENMACHER AND UPFAL, 2005, THEOREM 4.4]). Let 𝑋 be a binomial
random variable with mean `, and let 0 < [ ≤ 1. Then

P(𝑋 ≥ (1 + [)`) ≤ 𝑒−[
2`/3 . □

A.1 All PageRanks are close in total variation distance
In this section, we prove Lemma 9 (which we will use later in the proof of Theorem 10) and bound
the total variation distance between any PageRank and the corresponding reference rank.

LEMMA 25. Let G = (V, E) be a graph in G, let r̂ be a reset vector on G, and let 0 < Y < 1. Then
for all 𝑦 ∈ V with R(G) [𝑦] ≠ 0,

R(G) [𝑦] − R(G, r̂, Y) [𝑦]
R(G) [𝑦] ≤ Y𝜏G (r̂)

(
3 − log2 R(G) [𝑦]

)
.

PROOF. Fix 𝑦 ∈ V, and for brevity define 𝜏 := 𝜏G (r̂) and 𝐼 := ⌊− log2 R(G) [𝑦]⌋ + 2. Let (𝑀 (𝑡))𝑡≥0
be the uniform random walk on G with initial state drawn from r̂. Then by Lemma 13, we have

R(G, r̂, Y) [𝑦] = Y

∞∑︁
𝑡=0

(1 − Y)𝑡P
(
𝑀 (𝑡) = 𝑦

)
≥ Y

∞∑︁
𝑖=𝐼

𝜏−1∑︁
𝑡=0

(1 − Y)𝑖𝜏+𝑡P
(
𝑀 (𝑖𝜏 + 𝑡) = 𝑦

)
.
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By Lemma 23, for all 𝑖 ≥ 1 we have 𝜏G (2−𝑖 , r̂) ≤ 𝑖𝜏 . Thus by the definition of a mixing time, it
follows that

R(G, r̂, Y) [𝑦] ≥ Y

∞∑︁
𝑖=𝐼

𝜏−1∑︁
𝑡=0

(1 − Y)𝑖𝜏+𝑡
(
R(G) [𝑦] − 2−𝑖

)
. (6)

We now split (6) into two terms and bound each separately. We have

Y

∞∑︁
𝑖=𝐼

𝜏−1∑︁
𝑡=0

(1−Y)𝑖𝜏+𝑡R(G) [𝑦] = Y (1−Y)𝐼𝜏R(G) [𝑦]
∞∑︁
𝑡=0

(1−Y)𝑡 = (1−Y)𝐼𝜏R(G) [𝑦] ≥ (1−Y𝐼𝜏)R(G) [𝑦] .

(7)
Moreover,

Y

∞∑︁
𝑖=𝐼

𝜏−1∑︁
𝑡=0

(1 − Y)𝑖𝜏+𝑡2−𝑖 = Y ·
∞∑︁
𝑖=𝐼

(
(1 − Y)𝜏/2

)𝑖 · 𝜏−1∑︁
𝑡=0

(1 − Y)𝑡 ≤ Y ·
∞∑︁
𝑖=𝐼

2−𝑖 · 1 − (1 − Y)𝜏
Y

≤ Y · 2−𝐼+1 · 1 − (1 − Y𝜏)
Y

≤ Y · R(G) [𝑦] · 𝜏 .

(Here the last inequality relies on the definition of 𝐼 .) It follows from (6) and (7) that

R(G, r̂, Y) [𝑦] ≥
(
1 − Y (𝐼 + 1)𝜏

)
R(G) [𝑦] ≥

(
1 − Y𝜏 (3 − log2 R(G) [𝑦])

)
R(G) [𝑦],

so the result follows. □

LEMMA 9 (RESTATED). Let 𝛿 > 0, let Y ∈ (0, 1), and let 𝑇 (𝑛) be any function such that, for all 𝑛,

0 ≤ 𝑇 (𝑛) ≤ 1/(2Y (3 + 𝛿 log2 𝑛)).
Then for all 𝑛-vertex graphs G ∈ G𝑇 , all reset vectors r̂ on G, and all 𝑦 ∈ VG, we have
Cont𝛿 (R(G, r̂, Y),G, 𝑦) ≤ 1 + 2Y𝑇 (𝑛) (3 + 𝛿 log2 𝑛).

PROOF. Let 𝑦 ∈ VG. If R(G) [𝑦] ≤ 1/𝑛𝛿 , then Cont𝛿 (R(G, r̂, Y), 𝑦) ≤ 1, so suppose R(G) [𝑦] >
1/𝑛𝛿 ; thus we have Cont𝛿 (R(G, r̂, Y), 𝑦) ≤ R(G) [𝑦]/R(G, r̂, Y) [𝑦]. By Lemma 25, using the fact that
G ∈ G𝑇 (as defined in Section 4), it follows that

Cont𝛿 (R(G, r̂, Y), 𝑦) ≤ 1
1 − Y𝜏G (r̂)

(
3 − log2 R(G) [𝑦]

) ≤ 1
1 − Y𝑇 (𝑛) (3 + 𝛿 log2 𝑛)

.

Since 𝑇 (𝑛) ≤ 1/(2Y (3 + 𝛿 log2 𝑛)), it follows that Cont𝛿 (R(G, r̂, Y), 𝑦) ≤ 1 + 2Y𝑇 (𝑛) (3 + 𝛿 log2 𝑛) as
required. □

For any vector x̂ : 𝑉 → [0, 1] let 𝐻 (x̂) be its Shannon entropy, namely 𝐻 (x̂) =

−∑
𝑣∈𝑉 x̂[𝑣] log2 x̂[𝑣]. The following theorem bounds the total variation distance between R(G, r̂, Y)

and R(G) in terms of the Shannon entropy of R(G).

THEOREM 26. Let Y ∈ (0, 1). Then for all 𝑛-vertex graphs G ∈ G and all reset vectors r̂ on G, the
total variation distance between R(G, r̂, Y) and R(G) is at most Y𝜏G (r̂) (3 + 𝐻 (R(G))).

For any G ∈ G, 𝜏G is the mixing time of G from an arbitrary vertex and 𝐻 (R(G)) ≤ log2 𝑛, so
Theorem 26 implies that on an 𝑛-vertex graph G ∈ G, any PageRank with reset probability Y has
total variation distance at most 𝜏GY (3 + log2 𝑛) to the reference rank of G.

PROOF. We have

𝑑TV
(
R(G, r̂, Y), R(G)

)
=
1
2

∑︁
𝑦∈VG

��R(G, r̂, Y) [𝑦] − R(G) [𝑦]
��. (8)
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For all 𝑦 ∈ VG, let

𝛿𝑦 :=

{(
3 − log2 R(G) [𝑦]

)
R(G) [𝑦] if R(G) [𝑦] ≠ 0,

0 otherwise.

By Lemma 25, each vertex 𝑦 ∈ VG with R(G, r̂, Y) [𝑦] < R(G) [𝑦] contributes at most Y𝜏G (r̂)𝛿𝑦/2
to the sum in (8); thus in total such vertices contribute at most Y𝜏G (r̂)

∑
𝑦 𝛿𝑦/2. Moreover, the total

contribution of all vertices 𝑦 ∈ VG with R(G, r̂, Y) [𝑦] > R(G) [𝑦] is exactly the same. Thus in total,

𝑑TV
(
R(G, r̂, Y), R(G)

)
≤ Y𝜏G (r̂)

∑︁
𝑦∈VG

𝛿𝑦 = Y𝜏G (r̂)
(
3 + 𝐻

(
R(G)

) )
,

as required. □

A.2 Min-PPR can approximate R(G) well everywhere
We first prove probabilistic bounds on the relative error of PPR when its center vertex is chosen
randomly according to the reference rank of the graph; these are Lemmas 27 and 28.

LEMMA 27. Let Y ∈ (0, 1). Let G be a graph in G, and let 𝑋 be a vertex chosen randomly from
VG according to R(G). Then for all 𝑦 ∈ VG with R(G) [𝑦] ≠ 0, with probability at least 7/8,

R(G, 𝑋, Y) [𝑦] ≤
(
1 + 8Y emtG (R(G))

(
3 − log2 R(G) [𝑦]

) )
R(G) [𝑦] .

PROOF. Let 𝛿 := 8Y emtG (R(G)) (3 − log2 R(G) [𝑦]) for brevity, and let S be the set of all vertices
𝑋 satisfying R(G, 𝑋, Y) [𝑦] ≥ (1 + 𝛿)R(G) [𝑦]. We will prove the lemma by showing that R(G) [S] ≤
1/8.

Observe that R(G,R(G), Y) = R(G), since R(G) remains invariant under both resetting to R(G)
and uniformly random steps on G. By Lemma 22, applied with r̂ = R(G), it follows that

R(G) [𝑦] =
∑︁
𝑋 ∈VG

R(G) [𝑋 ] · R(G, 𝑋, Y) [𝑦] . (9)

We split the sum in (9) into two parts. By the definition of S, we have∑︁
𝑋 ∈S

R(G) [𝑋 ] · R(G, 𝑋, Y) [𝑦] ≥ R(G) [S] · (1 + 𝛿)R(G) [𝑦] . (10)

Moreover, by Lemma 25 (applied with r̂ = 𝑋 ) we have∑︁
𝑋 ∈VG\S

R(G) [𝑋 ] · R(G, 𝑋, Y) [𝑦] ≥
∑︁

𝑋 ∈VG\S
R(G) [𝑋 ]

(
1 − Y𝜏G (𝑋 )

(
3 − log2 R(G) [𝑦]

) )
R(G) [𝑦]

≥
(
R(G) [VG \ S] − Y emtG (R(G))

(
3 − log2 R(G) [𝑦]

) )
R(G) [𝑦] .

It follows by (9) and (10) that

R(G) [𝑦] ≥
(
1 + 𝛿R(G) [S] − Y emtG (R(G))

(
3 − log2 R(G) [𝑦]

) )
R(G) [𝑦],

so by rearranging we obtain

R(G) [S] ≤ 1
𝛿
· Y emtG (R(G))

(
3 − log2 R(G) [𝑦]

)
=
1
8

as required. □

LEMMA 28. Let Y ∈ (0, 1). Let G be a graph in G, and let 𝑋 be a vertex chosen randomly from
VG according to R(G). Then with probability at least 7/8, for all 𝑦 ∈ VG with R(G) [𝑦] ≠ 0,

R(G, 𝑋, Y) [𝑦] ≥
(
1 − 8Y emtG (R(G))

(
3 − log2 R(G) [𝑦]

) )
R(G) [𝑦] .
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Note that while Lemma 27 applies to only a single vertex 𝑦 ∈ VG, Lemma 28 applies collectively
to all such vertices.

PROOF. By Markov’s inequality, we have

P
(
𝜏G (𝑋 ) ≥ 8emtG (R(G))

)
≤ 1/8. (11)

Suppose 𝜏G (𝑋 ) < 8emtG (R(G)). Now consider a vertex 𝑦 ∈ VG with R(G) [𝑦] ≠ 0. By Lemma 25,
applied with r̂ = 𝑋 , we have

R(G) [𝑦] − R(G, 𝑋, Y) [𝑦]
R(G) [𝑦] ≤ Y𝜏G (𝑋 )

(
3 − log2 R(G) [𝑦]

)
< 8Y emtG (R(G))

(
3 − log2 R(G) [𝑦]

)
.

The result therefore follows from (11). □

We are now in a position to prove a general error bound for Min-PPR with a randomly-chosen set,
from which Theorem 10 will follow easily.

LEMMA 29. Let Y ∈ (0, 1), and let G be an 𝑛-vertex graph in G. Suppose 𝜏G ≤ 1/(2Y (3 +
𝐻 (R(G)))). Let p̂ be a probability distribution on VG with 𝑑TV (p̂,R(G)) ≤ 1/8. Let 𝑋1, . . . , 𝑋𝑘 ∼ p̂
be independent and identically distributed, and let K = {𝑋1, . . . , 𝑋𝑘 }. Then with probability at least
1 − 4−𝑘𝑛, for all 𝑦 ∈ VG:

(1) if R(G) [𝑦] = 0, then Rmin (G,K, Y) [𝑦] = 0, and
(2) if R(G) [𝑦] > 0, then��Rmin (G,K, Y) [𝑦] − R(G) [𝑦]

�� ≤ 35𝜏GY
(
1 + 𝐻 (R(G)) − log2 R(G) [𝑦]

)
R(G) [𝑦] . (12)

PROOF. For all 𝑦 ∈ VG with R(G) [𝑦] = 0 we say that 𝑦 is good if Rmin (G,K, Y) [𝑦] = 0. For all 𝑦
with R(G) [𝑦] > 0, we say that 𝑦 is good if (12) holds. We will prove that each vertex 𝑦 is good with
probability at least 1 − 4−𝑘 , splitting the proof into two cases according to R(G) [𝑦]. The result then
follows by a union bound over all 𝑦 ∈ VG.

Case 1: R(G)[𝒚] = 0. In this case, 𝑦 is good if and only if for some 𝑋𝑖 ∈ K, R(G, 𝑋𝑖 , Y) [𝑦] = 0.
Since R(G) [𝑦] = 0, no vertex with positive reference rank has a path to 𝑦 in G, so for all vertices
𝑥 with R(G) [𝑥] ≠ 0, we have R(G, 𝑥, Y) [𝑦] = 0 . Since 𝑑TV (p̂,R(G)) ≤ 1/8, it follows that for all
𝑖 ∈ [𝑘], P(R(G, 𝑋𝑖 , Y) [𝑦] ≠ 0) ≤ 1/8. Since 𝑋1, . . . , 𝑋𝑘 are independent, it follows that

P(𝑦 is good) = P(Rmin (G,K, Y) [𝑦] = 0) ≥ 1 − 8−𝑘 > 1 − 4−𝑘 ,

as claimed.

Case 2: R(G)[𝒚] ≠ 0. For brevity, let 𝛾 (𝑦) := 𝜏GY (3 − log2 R(G) [𝑦]). We will show that, for all
𝑦 ∈ V,

Rmin (G,K, Y) [𝑦] ≥ (1 − 𝛾 (𝑦))R(G) [𝑦] (13)
and that, for all 𝑦 ∈ V, with probability at least 1 − 4−𝑘 ,

Rmin (G,K, Y) [𝑦] ≤
(
1 + 35𝜏GY

(
1 + 𝐻 (R(G)) − log2 R(G) [𝑦]

) )
R(G) [𝑦] . (14)

Since 𝛾 (𝑦) ≤ 35𝜏GY (1 + 𝐻 (R(G)) − log2 R(G) [𝑦]), Equation (13) and (14) imply condition (ii).
Recall that Rmin (G,K, Y) [𝑦] = min{R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K}/Υ where

Υ =
∑︁
𝑣∈V

min{R(G, 𝑋, Y) [𝑣] : 𝑋 ∈ K}.

First, we note that Equation (13) follows from two observations.
• By Lemma 25, for all 𝑖 ∈ [𝑘] we have R(G) [𝑦] − R(G, 𝑋𝑖 , Y) [𝑦] ≤ 𝛾 (𝑦)R(G) [𝑦], and
• Υ ≤ 1.
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Next, we prove that for all 𝑦 ∈ V, with probability at least 1 − 4−𝑘 , (14) holds.
Lemma 27 implies that if𝑋 ∼ R(G), then with probability at least 7/8, R(G, 𝑋, Y) [𝑦]−R(G) [𝑦] ≤

8𝛾 (𝑦)R(G) [𝑦]. Since 𝑑TV (p̂,R(G)) ≤ 1/8, it follows that for all 𝑖 ∈ [𝑘], with probability at least
3/4, R(G, 𝑋𝑖 , Y) [𝑦] − R(G) [𝑦] ≤ 8𝛾 (𝑦)R(G) [𝑦]. Thus,

P
(
min

{
R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K

}
− R(G) [𝑦] ≤ 8𝛾 (𝑦)R(G) [𝑦]

)
≥ 1 − 4−𝑘 . (15)

To derive (14) from (15), we next derive a lower bound for Υ. By (13), for all 𝑖 ∈ [𝑘],
R(G, 𝑋𝑖 , Y) [𝑦] ≥ (1 − 𝛾 (𝑦))R(G) [𝑦]. Thus,

Υ ≥
∑︁

𝑦∈V : R(G) [𝑦 ]>0
(1 − 𝛾 (𝑦))R(G) [𝑦] = 1 − 𝜏GY

(
3 + 𝐻 (R(G))

)
.

Since 𝜏G < 1/(2Y (3 + 𝐻 (R(G)))), it follows that

Υ−1 ≤ 1 + 2𝜏GY
(
3 + 𝐻 (R(G))

)
.

Thus, if the event of (15) occurs for some 𝑦 ∈ VG, then we have

Rmin (G,K, Y) [𝑦] = min
{
R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K

}
· Υ−1

≤
(
1 + 9𝛾 (𝑦) + 2𝜏GY

(
3 + 𝐻 (R(G)

) )
R(G) [𝑦]

=

(
1 + 𝜏GY

(
33 − 9 log2 R(G) [𝑦] + 2𝐻 (R(G))

) )
R(G) [𝑦] . □

Since the event of (15) occurs with probability at least 1 − 4−𝑘 , by (15), it follows that (14) holds for
𝑦 with probability at least 1 − 4−𝑘 as required.

THEOREM 10 (RESTATED). Let 𝛿 ≥ 1. Let Y ∈ (0, 1) and let 𝑇 (𝑛) ≤ 1/(210Y𝛿 log2 𝑛). Let G ∈ G
be an 𝑛-vertex graph with 𝑛 ≥ 3, and suppose that the worst-case mixing time of 𝐺 is at most 𝑇 (𝑛).
Let 𝑘 ≥ 1, let r̂ be an arbitrary reset vector, let 𝑋1, . . . , 𝑋𝑘 be drawn independently from VG with
probabilities given by R(G, r̂, Y), and let K = {𝑋1, . . . , 𝑋𝑘 }. Then with probability at least 1 − 4−𝑘𝑛,
the distortion of T-Min-PPR𝑘,Y (G,K) satisfies D𝛿 (Rmin (G,K, Y),G) ≤ 1 + 210Y𝛿𝑇 (𝑛) log2 𝑛.

PROOF. Since 𝑇 (𝑛) ≤ 1/(32Y𝛿 log2 𝑛), G ∈ G𝑇 , and 𝛿 ≥ 1, Theorem 26 implies that

𝑑TV
(
R(G, r̂, Y),R(G)) ≤ 𝜏GY (3 + 𝐻 (R(G))

)
≤ 4Y𝑇 (𝑛) log2 𝑛 ≤ 1/8.

Thus by Lemma 29, with probability at least 1 − 4−𝑘𝑛:

(1) for all 𝑦 ∈ VG with R(G) [𝑦] = 0, we have Rmin (G,K, Y) [𝑦] = 0 also; and
(2) for all 𝑦 ∈ VG with R(G) [𝑦] ≠ 0, (12) holds for 𝑦.

Suppose this event occurs, so that (i) and (ii) hold, and let 𝑦 ∈ VG; we will use (i) and (ii) to bound
the distortion of Rmin (G,K, Y) on 𝑦. We split into cases depending on R(G) [𝑦].

Case 1: R(G)[𝒚] = 0. By (i), this implies Rmin (G,K, Y) [𝑦] = 0, so D𝛿 (Rmin (G,K, Y),G) = 1.

Case 2: 0 < R(G)[𝒚] < 1/𝒏𝜹 . In this case we have Cont𝛿 (Rmin (G,K, Y),G, 𝑦) ≤ 1, and

Stretch𝛿
(
Rmin (G,K, Y),G, 𝑦

)
= max

{
1, 𝑛𝛿 Rmin (G,K, Y) [𝑦]

}
. (16)

Since (ii) holds, by (12) we have

𝑛𝛿 Rmin (G,K, Y) [𝑦] ≤ 𝑛𝛿
(
1 + 35𝜏GY

(
1 + 𝐻 (R(G)) − log2 R(G) [𝑦]

) )
R(G) [𝑦] . (17)
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The function 𝑥 ↦→ −(log2 𝑥)𝑥 is increasing over 𝑥 ∈ (0, 1/3], and R(G) [𝑦] ≤ 1/𝑛𝛿 ≤ 1/3, so
−(log2 R(G) [𝑦])R(G[𝑦]) ≤ (𝛿 log2 𝑛)/𝑛𝛿 . We also have 𝐻 (R(G)) ≤ log2 𝑛 by a standard bound on
Shannon entropy. It follows from (17) that

𝑛𝛿 Rmin (G,K, Y) [𝑦] ≤ 1 + 35𝜏GY
(
1 + log2 𝑛 + 𝛿 log2 𝑛

)
≤ 1 + 105𝜏GY𝛿 log2 𝑛.

Since G ∈ G𝑇 , it follows by (16) that D𝛿 (R(G,K, Y),G, 𝑦) ≤ 1 + 105Y𝛿𝑇 (𝑛) log2 𝑛.

Case 3: R(G)[𝒚] ≥ 1/𝒏𝜹 . In this case, for brevity, let

Γ = 35𝜏GY
(
1 + 𝐻 (R(G)) − log2 R(G) [𝑦]

)
.

Following Case 2, observe that Γ ≤ 105𝜏GY𝛿 log2 𝑛. Since G ∈ G𝑇 , it follows that Γ ≤
105Y𝛿𝑇 (𝑛) log2 𝑛 ≤ 1/2.

Since (ii) holds, (12) holds for 𝑦, so

Cont𝛿
(
Rmin (G,K, Y),G, 𝑦

)
≤ R(G) [𝑦]

Rmin (G,K, Y) [𝑦]
≤ 1

1 − Γ
.

Since Γ ≤ 1/2, it follows that

Cont𝛿
(
Rmin (G,K, Y),G, 𝑦

)
≤ 1 + 2Γ ≤ 1 + 210Y𝛿𝑇 (𝑛) log2 𝑛.

Moreover, we have

Stretch𝛿
(
Rmin (G,K, Y),G, 𝑦

)
= max

{ 1/𝑛𝛿
R(G) [𝑦] ,

Rmin (G,K, Y) [𝑦]
R(G) [𝑦]

}
≤ max

{
1,

Rmin (G,K, Y) [𝑦]
R(G) [𝑦]

}
,

where
Rmin (G,K, Y) [𝑦]

R(G) [𝑦] ≤ 1 + Γ < 1 + 210Y𝑇 (𝑛) log2 𝑛.

The result therefore follows. □

We now prove a version of Lemma 29 which gives error bounds in terms of emtG (R(G)) rather
than in terms of 𝜏G. To ensure a reasonable lower bound, we will need to discard some of our centers;
we do this in a graph-agnostic way, to facilitate turning the lemma into a ranking algorithm.

LEMMA 30. Let 𝛿 > 1. Let G = (V, E) be an 𝑛-vertex graph in G where 𝑛 ≥ 2 is sufficiently large
that 𝑛𝛿−1 ≥ 32. Let Y ∈ (0, 1) be sufficiently small that 8Y emtG (R(G)) ≤ 1/(20𝛿 log2 (𝑛)). Let 𝛾 be
any real number satisfying 8Y emtG (R(G)) ≤ 𝛾 ≤ 1/(20𝛿 log2 (𝑛)).

Let p̂ be a probability distribution on V with 𝑑TV (p̂,R(G)) ≤ 1/8. Let 𝑋1, . . . , 𝑋2𝑘+1 ∼ p̂ be inde-
pendent and identically distributed. For each 𝑦 ∈ V, let 𝑀 (𝑦) be the median of {R(G, 𝑋𝑖 , Y) [𝑦] : 𝑖 ∈
[2𝑘 + 1]}. For each 𝑖 ∈ [2𝑘 + 1], let

b𝑖 := max
{𝑀 (𝑦) − R(G, 𝑋𝑖 , Y) [𝑦]

𝑀 (𝑦) : 𝑦 ∈ V, 𝑀 (𝑦) ≥ 1/(2𝑛𝛿 )
}
.

Let 𝑓 : [2𝑘 + 1] → [2𝑘 + 1] be an arbitrary permutation such that b 𝑓 (1) ≤ · · · ≤ b 𝑓 (2𝑘+1) , and let
K = {𝑋𝑓 (𝑖 ) : 𝑖 ∈ [𝑘 + 1]}. Then with probability at least 1 − (𝑛 + 1)𝑒−𝑘/6, for all 𝑦 ∈ V,

Rmin (G,K, Y) [𝑦] ≤
{(
1 + 2𝛾 (3 − log2 R(G) [𝑦]) + 12𝛿𝛾 log2 𝑛 + 2𝑛1−𝛿

)
R(G) [𝑦] if R(G) [𝑦] ≠ 0,

0 otherwise.
(18)

Moreover, for all 𝑦 ∈ V with R(G) [𝑦] ≥ 𝑛−𝛿 ,

Rmin (G,K, Y) [𝑦] ≥ (1 − 6𝛿𝛾 log2 𝑛)R(G) [𝑦] . (19)
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PROOF. We use the following definitions throughout the proof. For all 𝑦 ∈ V with R(G) [𝑦] ≠ 0,
we let 𝐿(𝑦) = 3 − log2 R(G) [𝑦]. Let A be the set of all indices 𝑖 ∈ [2𝑘 + 1] such that for some 𝑦 ∈ V
with R(G) [𝑦] ≥ 1/(4𝑛𝛿 ), R(G, 𝑋𝑖 , Y) [𝑦] < (1 − 𝛾𝐿(𝑦))R(G) [𝑦]. Finally, for all 𝑦 ∈ V, let

B𝑦 =

{{
𝑖 ∈ [2𝑘 + 1] : R(G, 𝑋𝑖 , Y) [𝑦] > (1 + 𝛾𝐿(𝑦))R(G) [𝑦]

}
if R(G) [𝑦] ≠ 0,{

𝑖 ∈ [2𝑘 + 1] : R(G, 𝑋𝑖 , Y) [𝑦] ≠ 0
}

otherwise.

We will first bound |A| and each |B𝑦 | above with high probability, then use these bounds to prove the
lemma.

Claim 1: P
(
|A| ≤ 𝑘 ∧ (∀𝑦 ∈ V, |B𝑦 | ≤ 𝑘)

)
≥ 1 − (𝑛 + 1)𝑒−𝑘/6.

Proof of Claim 1: We first bound |A|. Since 𝛾 ≥ 8Y emtG (R(G)), by Lemma 28, if 𝑋 ∼ R(G)
then

P
(
R(G, 𝑋, Y) [𝑦] < (1 − 𝛾𝐿(𝑦))R(G) [𝑦] for some 𝑦 ∈ V with R(G) [𝑦] > 0

)
≤ 1/8.

Since 𝑑TV (R(G), p̂) ≤ 1/8, it follows that for any 𝑖 ∈ [2𝑘 + 1], we have P(𝑖 ∈ A) ≤ 1/4, so |A| is a
binomial variable with mean at most (2𝑘 + 1)/4. Thus by a Chernoff bound (Lemma 24 applied with
[ = 1), it follows that

P( |A| ≥ 𝑘 + 1) ≤ P
(
|A| ≥ 2 · 2𝑘 + 1

4

)
≤ 𝑒−(2𝑘+1)/12 ≤ 𝑒−𝑘/6. (20)

We now bound each |B𝑦 |.
• First, suppose 𝑦 ∈ V with R(G) [𝑦] = 0.

As in the proof of Lemma 29, no vertex with positive reference rank has a path to 𝑦 in G, so if
𝑋 ∼ R(G) then P(R(G, 𝑋, Y) [𝑦] ≠ 0) = 0. Since 𝑑TV (p̂,R(G)) ≤ 1/8, for each 𝑖 ∈ [2𝑘 + 1] it
follows that P(R(G, 𝑋𝑖 , Y) [𝑦] ≠ 0) ≤ 1/8. Thus |By | is a binomial variable with mean at most
(2𝑘 + 1)/8, so by Lemma 24 we have

P( |B𝑦 | ≥ 𝑘 + 1) ≤ 𝑒−𝑘/6 whenever R(G) [𝑦] = 0. (21)

• Next suppose 𝑦 ∈ V with R(G) [𝑦] ≠ 0.
Since 𝛾 ≥ 8Y emtG (R(G)), by Lemma 27, if 𝑋 ∼ R(G) then

P
(
R(G, 𝑋, Y) [𝑦] > (1 + 𝛾𝐿(𝑦))R(G) [𝑦]

)
≤ 1/8.

Since 𝑑TV (R(G), p̂) ≤ 1/8, it follows that P(𝑖 ∈ B𝑦) ≤ 1/4. Thus once again by Lemma 24,
we have

P( |B𝑦 | ≥ 𝑘 + 1) ≤ 𝑒−𝑘/6 whenever R(G) [𝑦] ≠ 0. (22)

Combining (20)–(22) with a union bound, the claim follows. (End of Proof of Claim 1.)
The lemma follows from Claim 1, together with the following claim.
Claim 2: If |A| ≤ 𝑘 and, for all 𝑦 ∈ V, |B𝑦 | ≤ 𝑘 , then:

• for all 𝑦 ∈ V, inequality (18) holds, and
• for all 𝑦 ∈ V with R(G) [𝑦] ≥ 𝑛−𝛿 , inequality (19) holds.

Proof of Claim 2: From now on we will assume that |A| ≤ 𝑘 and, for all 𝑦 ∈ V, that |B𝑦 | ≤ 𝑘 .
Equations (18) and (19) give upper and lower bounds on Rmin (G,K, Y) [𝑦] for certain 𝑦 ∈ V. Recall

that Rmin (G,K, Y) [𝑦] = min{R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K}/Υ where

Υ =
∑︁
𝑣∈V

min
{
R(G, 𝑋, Y) [𝑣] : 𝑋 ∈ K

}
.
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We first observe that for all 𝑦 ∈ V and all (𝑘 + 1)-element subsets I of [2𝑘 + 1], since |B𝑦 | ≤ 𝑘 ,

min
{
R(G, 𝑋𝑖 , Y) [𝑦] : 𝑖 ∈ I

}
≤
{
(1 + 𝛾𝐿(𝑦))R(G) [𝑦] if R(G) [𝑦] ≠ 0,
0 otherwise.

(23)

It will be useful to upper-bound the right-hand-side of (23) as follows. Suppose 0 < R(G) [𝑦] ≤
𝑟 ≤ 1/3. In this case,

(1 + 𝛾𝐿(𝑦))R(G) [𝑦] ≤ (1 + 𝛾 (3 − log2 𝑟 ))𝑟 . (24)
To see this, note that the function 𝑓 (𝑥) = 𝑥 log2 (1/𝑥) is increasing for 𝑥 ∈ (0, 1/3], so

(1 + 𝛾 (3 − log2 R(G) [𝑦]))R(G) [𝑦] = 1 + 3𝛾R(G) [𝑦] + 𝛾R(G) [𝑦] log2 (1/R(G) [𝑦])
≤ 1 + 3𝛾𝑟 + 𝛾𝑟 log2 (1/𝑟 )
=
(
1 + 𝛾 (3 − log2 𝑟 )

)
𝑟 .

The proof of the claim will proceed as follows. In Step 1, we prove an upper bound on b𝑖 for
all 𝑖 ∉ A, and hence (as we will see) for all 𝑖 such that 𝑋𝑖 ∈ K. In Step 2, we will turn this into a
lower bound on min{R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K} whenever R(G) [𝑦] ≥ 1/𝑛𝛿 . This will suffice in Step 3
to bound the normalizing factor Υ below. In Step 4, we use this, together with (23) and the lower
bound of Step 2, to prove (18) and (19).

Step 1: Consider any 𝑣 ∈ V with 𝑀 (𝑣) ≥ 1/(2𝑛𝛿 ). Each time we apply (23) in this step we will
take I to be a set of 𝑘 + 1 indices 𝑖 with R(G, 𝑋𝑖 , Y) [𝑣] as large as possible.

We first prove R(G) [𝑣] > 0. For contradiction, suppose R(G) [𝑣] = 0. By (23) we have 𝑀 (𝑣) = 0,
contradicting our choice of 𝑣 .

Given that R(G) [𝑣] > 0 we now prove R(G) [𝑣] ≥ 1/(4𝑛𝛿 ). For contradiction, suppose
R(G) [𝑣] < 1/(4𝑛𝛿 ). By (23) we have 𝑀 (𝑣) ≤ (1 + 𝛾𝐿(𝑦))R(G) [𝑣]. Using (24) with 𝑟 = 1/(4𝑛𝛿 ),
we have

𝑀 (𝑣) ≤
(
1 + 𝛾 (3 + log2 (4𝑛𝛿 ))

) 1
4𝑛𝛿

=
(
1 + 𝛾 (5 + 𝛿 log2 (𝑛))

) 1
4𝑛𝛿

.

Since (from the statement) 𝛿 log2 𝑛 ≥ 5, this is at most (1 + 2𝛾𝛿 log2 (𝑛)) 1
4𝑛𝛿 . Using the upper bound

on 𝛾 from the statement of the lemma, this is less than 1/(2𝑛𝛿 ). This contradicts our choice of 𝑣 , so
we must have R(G) [𝑣] ≥ 1/(4𝑛𝛿 ) as claimed.

Now consider any 𝑖 ∈ [2𝑘 + 1] \ A. It follows from the definition of A that

R(G, 𝑋𝑖 , Y) [𝑣] ≥ (1 − 𝛾𝐿(𝑣))R(G) [𝑣] . (25)

Once again, by (23) we have 𝑀 (𝑣) ≤ (1 + 𝛾𝐿(𝑣))R(G) [𝑣], so

R(G) [𝑣] ≥ (1 + 𝛾𝐿(𝑣))−1𝑀 (𝑣) ≥ (1 − 𝛾𝐿(𝑣))𝑀 (𝑣).
It follows from (25) that R(G, 𝑋𝑖 , Y) [𝑣] ≥ (1−2𝛾𝐿(𝑣))𝑀 (𝑣). Since R(G) [𝑣] ≥ 1/(4𝑛𝛿 ), it follows

using the definition of 𝐿(𝑣) that

R(G, 𝑋𝑖 , Y) [𝑣] ≥
(
1 − 2𝛾 (3 + log2 (4𝑛𝛿 ))

)
𝑀 (𝑣) =

(
1 − 2𝛾 (5 + 𝛿 log2 𝑛)

)
𝑀 (𝑣).

Since (from the statement) 𝛿 log2 𝑛 ≥ 5, this is at least (1 − 4𝛾𝛿 log2 (𝑛))𝑀 (𝑣). We have shown that
for every 𝑣 ∈ V with 𝑀 (𝑣) ≥ 1/(2𝑛𝛿 ), we have R(G, 𝑋𝑖 , Y) [𝑣] ≥ (1 − 4𝛾𝛿 log2 (𝑛))𝑀 (𝑣).

From the definition of b𝑖 , there is some 𝑣 ∈ V with 𝑀 (𝑣) ≥ 1/(2𝑛𝛿 ) such that b𝑖 =

1 − R(G, 𝑋𝑖 , Y) [𝑣]/𝑀 (𝑣). Thus b𝑖 ≤ 4𝛾𝛿 log2 𝑛 for all 𝑖 ∉ A. Since |A| ≤ 𝑘 and |K| = 2𝑘 + 1, it
follows that b 𝑓 (1) , . . . , b 𝑓 (𝑘+1) ≤ 4𝛾𝛿 log2 𝑛.

Step 2: Consider any 𝑦 ∈ V with R(G) [𝑦] ≥ 1/𝑛𝛿 . By the definition of A, since |A| ≤ 𝑘 , we have
𝑀 (𝑦) ≥ (1 − 𝛾𝐿(𝑦))R(G) [𝑦]. Since 𝛿 log2 𝑛 ≥ 3,

𝐿(𝑦) = 3 + log2 (1/R(G) [𝑦]) ≤ 3 + 𝛿 log2 𝑛 ≤ 2𝛿 log2 𝑛,
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so we conclude that 𝑀 (𝑦) ≥ (1−𝛾𝐿(𝑦))R(G) [𝑦] ≥ (1−2𝛾𝛿 log2 𝑛)R(G) [𝑦]. Since the upper bound
on 𝛾 in the statement guarantees that 𝛾𝛿 log2 𝑛 ≤ 1/4, we have

𝑀 (𝑦) ≥ (1 − 2𝛾𝛿 log2 𝑛)R(G) [𝑦] ≥ R(G) [𝑦]/2 ≥ 1/(2𝑛𝛿 ). (26)

We proved in Step 1 that b 𝑓 (1) , . . . , b 𝑓 (𝑘+1) ≤ 4𝛾𝛿 log2 𝑛. Thus, by the definition of K in the
statement of the lemma, for each 𝑋𝑖 ∈ K, b𝑖 ≤ 4𝛾𝛿 log2 𝑛. Since (26) guarantees that 𝑀 (𝑦) ≥ 1/(2𝑛𝛿 ),
the definition of b𝑖 ensures that b𝑖 ≥ 1 − R(G, 𝑋𝑖 , Y) [𝑦]/𝑀 (𝑦) so

min{R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K} ≥ (1 − 4𝛾𝛿 log2 𝑛)𝑀 (𝑦).
Using the first inequality in (26), we have

min
{
R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K

}
≥ (1 − 6𝛾𝛿 log2 𝑛)R(G) [𝑦] . (27)

Note that we have proved (27) for all 𝑦 ∈ V with R(G) [𝑦] ≥ 1/𝑛𝛿 .
Step 3: We next bound the normalizing factor Υ. By (27), we have

Υ =
∑︁
𝑣∈V

min
{
R(G, 𝑋, Y) [𝑣] : 𝑋 ∈ K

}
≥

∑︁
𝑣∈V

R(G) [𝑣 ]≥1/𝑛𝛿

(1 − 6𝛾𝛿 log2 𝑛)R(G) [𝑣]

≥ 1 − 6𝛾𝛿 log2 𝑛 − 𝑛(1/𝑛𝛿 ) = 1 − 6𝛾𝛿 log2 𝑛 − 𝑛1−𝛿 .

The upper bound on 𝛾 in the statement of the lemma guarantees that 6𝛾𝛿 log2 𝑛 ≤ 6/20. Since
𝑛𝛿−1 ≥ 5, 𝑛1−𝛿 ≤ 4/20 so the sum of these is at most 1/2. It follows that

1
Υ
≤ 1 + 12𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 . (28)

Step 4: We are now ready to prove (18) and (19). For all 𝑦 ∈ V with R(G) [𝑦] ≥ 𝑛−𝛿 , since
Rmin (G,K, Y) [𝑦] = min{R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K}/Υ and Υ ≤ 1, (27) implies that (19) holds. By (23)
applied with I = {𝑓 (1), . . . , 𝑓 (𝑘+1)}, for all𝑦 ∈ V with R(G) [𝑦] = 0, we have Rmin (R(G),K, Y) [𝑦] =
0 (as required by (18)). Finally, again by (23), for all 𝑦 ∈ V with R(G) [𝑦] ≠ 0, we have

min
{
R(G, 𝑋, Y) [𝑦] : 𝑋 ∈ K

}
≤ (1 + 𝛾𝐿(𝑦))R(G) [𝑦] .

The upper bound on 𝛾 in the statement of the lemma ensures that 12𝛾𝛿 log2 𝑛 ≤ 3/5. Since
𝑛𝛿−1 ≥ 5, 2𝑛1−𝛿 ≤ 2/5. Thus, their sum (in the right-hand side of (28)) is at most 1. It follows by (28)
that

Rmin (R(G),K, Y) ≤
(
1 + 2𝛾𝐿(𝑦) + 12𝛿𝛾 log2 𝑛 + 2𝑛1−𝛿

)
R(G) [𝑦] .

Hence (18) follows. (End of Proof of Claim 2.) □

We now turn Lemma 30 into a ranking algorithm T-Min-PPR𝛾,𝛿,𝑘,Y as follows. The parameter 𝑘 is
a positive integer and the other parameters are real numbers satisfying 𝛾, Y ∈ (0, 1) and 𝛿 > 1. Given a
graph G and a trusted set T ⊆ VG, T-Min-PPR𝛾,𝛿,𝑘,Y (G,T) chooses a set K ⊆ T of size min{2𝑘−1, |T|}.
Then the algorithm calculates, for each 𝑦 ∈ V, the median 𝑀 (𝑦) of {R(G, 𝑐, Y) : 𝑐 ∈ K}, and the
observed divergences

b𝑐 := max
{𝑀 (𝑦) − R(G, 𝑐, Y) [𝑦]

𝑀 (𝑦) : 𝑦 ∈ V, 𝑀 (𝑦) ≥ 1
2𝑛𝛿

}
.

The algorithm then forms a set K′ ⊆ K by discarding the 𝑘 − 1 vertices in K with the highest
values of b𝑐 , then taking a coherent subset that is as large as possible. Finally, the algorithm outputs
Rmin (G,K′, Y).

Essentially, T-Min-PPR𝛾,𝛿,𝑘,Y is similar to T-Min-PPR𝑘,Y , except that, rather than choosing 𝑘 centers
arbitrarily from T, the algorithm chooses them according to which of their PPRs agrees most closely
with the median PPR. As the following theorem shows, when G ∈ G, 𝑛−𝛿 acts as a significance
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threshold, 𝛾 acts as an accuracy parameter for vertices with reference rank above this threshold, and
the algorithm gives good results when Y is small relative to 𝑛−𝛿 , 𝛾 , and 𝜏G.

THEOREM 31. Let 𝑘 be a positive integer. Let 𝛿 > 1. Let G = (V, E) be an 𝑛-vertex graph
in G where 𝑛 ≥ 2 is sufficiently large that 𝑛𝛿−1 ≥ 32. Let Y ∈ (0, 1) be sufficiently small that
8Y emtG (R(G)) ≤ 1/(20𝛿 log2 (𝑛)). Let 𝛾 be any real number satisfying 8Y emtG (R(G)) ≤ 𝛾 ≤
1/(20(10 + 𝛿 log2 (𝑛))). Let p̂ be a probability distribution on V with 𝑑TV (p̂,R(G)) ≤ 1/8. Let
𝑋1, . . . , 𝑋2𝑘−1 ∼ p̂ be independent and identically distributed. Let T = {𝑋1, . . . , 𝑋2𝑘−1}. Then with
probability at least 1 − (𝑛 + 1)𝑒−(𝑘−1)/6,

D𝛿

(
T-Min-PPR𝛾,𝛿,𝑘,Y (G,T),G

)
≤ 1 + 40𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 . (29)

Theorem 31 says that when G is ergodic, and the parameters are chosen appropriately, then
T-Min-PPR𝛾,𝛿,𝑘,Y performs essentially at least as well as the simpler algorithm T-Min-PPR𝑘,Y . The
key difference is that T-Min-PPR𝑘,Y requires an upper bound on the worst-case mixing time 𝜏G, while
T-Min-PPR𝛾,𝛿,𝑘,Y requires an analogous upper bound on the (potentially much smaller) average-case
mixing time emtG (R(G)).

PROOF. Recall from the definition that in computing a ranking function, T-Min-PPR𝛾,𝛿,𝑘,Y (G,T)
first chooses a subset of T of size min{2𝑘 − 1, |T|}; since |T| = 2𝑘 − 1, this must be T itself. It then
chooses a subset K ⊆ T by discarding 𝑘 − 1 vertices as in the statement of Lemma 30. (Note that in
this proof, we will take the 𝑘 of Lemma 30 to be our present 𝑘 − 1.) Since G ∈ G, any non-empty
subset of V is coherent; thus K is coherent, so we have T-Min-PPR𝛾,𝛿,𝑘,Y (G,T) = Rmin (G,K, Y).

By Lemma 30, with probability at least 1 − (𝑛 + 1)𝑒−(𝑘−1)/6, (18) holds for all 𝑦 ∈ V and (19)
holds for all 𝑦 ∈ V with R(G) [𝑦] ≥ 𝑛−𝛿 . Suppose this event occurs; then we will show that (29)
holds. To bound the distortion at each vertex 𝑦 ∈ V, we split into cases depending on R(G) [𝑦].
Case 1: R(G)[𝒚] = 0. By (18), this implies Rmin (G,K, Y) [𝑦] = 0. Thus Rmin (G,K, Y), and hence
T-Min-PPR𝛾,𝛿,𝑘,Y (G,T), has distortion exactly 1 at 𝑦.

Case 2: 0 < R(G)[𝒚] < 1/𝒏𝜹 . In this case, Rmin (G,K, Y) has contraction at most 1 at 𝑦, and

Stretch𝛿
(
Rmin (G,K, Y),G, 𝑦

)
= max

{
1, 𝑛𝛿Rmin (G,K, Y) [𝑦]

}
.

Since (18) holds for 𝑦, we have

𝑛𝛿Rmin (G,K, Y) [𝑦] ≤ 𝑛𝛿
(
1 + 2𝛾 (3 − log2 R(G) [𝑦]) + 12𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿

)
R(G).

The function 𝑥 ↦→ −(log2 𝑥)𝑥 is increasing over 𝑥 ∈ (0, 1/3], and R(G) [𝑦] ≤ 1/𝑛𝛿 ≤ 1/3, so
−(log2 R(G) [𝑦])R(G) [𝑦] ≤ (𝛿 log2 𝑛)/𝑛𝛿 . It follows that

𝑛𝛿Rmin (G,K, Y) [𝑦] ≤ 1 + 2𝛾 (3 + 𝛿 log2 𝑛) + 12𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 ≤ 1 + 20𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 .

It follows that D𝛿 (Rmin (G,K, Y),G, 𝑦) ≤ 1 + 40𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 , as required.

Case 3: R(G)[𝒚] ≥ 1/𝒏𝜹 . Since (19) holds for all 𝑦 ∈ V with R(G) [𝑦] ≥ 𝑛−𝛿 , for all such 𝑦 we
have

Cont𝛿
(
Rmin (G,K, Y),G, 𝑦

)
≤ R(G) [𝑦]

Rmin (G,K, Y) [𝑦]
≤ 1

1 − 6𝛿𝛾 log2 𝑛
.

Since 𝛾 ≤ 1/(20(10 + 𝛿 log2 𝑛)), we have 6𝛿𝛾 log2 𝑛 ≤ 1/2; hence

Cont𝛿
(
Rmin (G,K, Y),G, 𝑦

)
≤ 1 + 12𝛿𝛾 log2 𝑛 < 1 + 40𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 . (30)

Moreover, we have

Stretch𝛿
(
Rmin (G,K, Y),G, 𝑦

)
= max

{ 1/𝑛𝛿
R(G) [𝑦] ,

Rmin (G,K, Y) [𝑦]
R(G) [𝑦]

}
≤ max

{
1,

Rmin (G,K, Y) [𝑦]
R(G) [𝑦]

}
,
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where (18) implies that

Rmin (G,K, Y) [𝑦]
R(G) [𝑦] ≤ 1 + 40𝛾𝛿 log2 𝑛 + 2𝑛1−𝛿 .

The result therefore follows from (30). □

B SPAM RESISTANCE OF MIN-PPR
In this section, we bound the spam resistance of Min-PPR𝑘,Y , proving Theorem 11. We first prove a
technical lemma which bounds the effect a spammer can have on PPR.

LEMMA 32. Let G = (V, EG) be a graph. Let P ⊆ V, and let H = (V∪ S, EH) ∈ GP (where S and V
are disjoint). Let r̂ be a reset vector on G with r̂[𝑣] = 0 for all 𝑣 ∈ P, and let r̂′ be the corresponding
reset vector on H with r̂′ [𝑣] = r̂[𝑣] for all 𝑣 ∈ V and r̂′ [𝑣] = 0 for all 𝑣 ∈ S. Then for all 0 < Y < 1
and all A ⊆ V, we have

R(H, r̂′, Y) [A ∪ S] ≤ R(G, r̂, Y) [A \ P] + Y−1R(G, r̂, Y) [P]

Remark: By taking A = P, Lemma 32 implies that T-PPRY is Y-spam resistant (see the proof of
Lemma 3 below). In fact, the same holds for any ranking algorithm which carries out some form
of PageRank that only resets to trusted vertices. However, Lemma 32 does not immediately imply
Y-spam resistance for Min-PPR𝑘,Y , since the reset vector on H does not in general match the reset
vector on G as required by the lemma. Nevertheless, we will use the full strength of the lemma (with
a more subtle choice of A) to demonstrate spam resistance of Min-PPR𝑘,Y in the proof of Theorem 11
below.

PROOF. Let (𝑋𝑖 )𝑖≥0 be a uniform random walk on G with initial state drawn from r̂, and let (𝑌𝑖 )𝑖≥0
be a uniform random walk on H with initial state drawn from r̂′. By Lemma 13 applied to H and r̂′,
we have

R(H, r̂′, Y) [A ∪ S] = Y

∞∑︁
𝑖=0

(1 − Y)𝑖P(𝑌𝑖 ∈ A ∪ S). (31)

If 𝑌𝑖 ∈ A ∪ S, then either 𝑌 passed through P at some time in [0, 𝑖] or it did not, and in the latter case
we must have 𝑌𝑖 ∈ A \ P. For all 𝑗 ≥ 0, let E 𝑗 be the event that 𝑌0, . . . , 𝑌𝑗−1 ∉ P. Then by (31) and a
union bound, we have

R(H, r̂′, Y) [A ∪ S] ≤ Y

∞∑︁
𝑖=0

(1 − Y)𝑖
( 𝑖∑︁
𝑗=0
P
(
𝑌𝑗 ∈ P and E 𝑗

)
+ P

(
𝑌𝑖 ∈ A \ P and E𝑖

) )
Before hitting P, 𝑌 behaves exactly like 𝑋 ; more formally, the two chains can be coupled until this
stopping time. Thus

R(H, r̂′, Y) [A ∪ S] ≤ Y

∞∑︁
𝑖=0

(1 − Y)𝑖
( 𝑖∑︁
𝑗=0
P
(
𝑋 𝑗 ∈ P and E 𝑗

)
+ P

(
𝑋𝑖 ∈ A \ P and E𝑖

) )
≤ Y

∞∑︁
𝑖=0

(1 − Y)𝑖
( 𝑖∑︁
𝑗=0
P
(
𝑋 𝑗 ∈ P

)
+ P

(
𝑋𝑖 ∈ A \ P

) )
(32)

We now simplify each part of the right-hand side of (32). By Lemma 13 applied to G and r̂, we
have

Y

∞∑︁
𝑖=0

(1 − Y)𝑖P(𝑋𝑖 ∈ A \ P) = R(G, r̂, Y) [A \ P] . (33)
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Moreover, by reordering the summation, we have

Y

∞∑︁
𝑖=0

(1 − Y)𝑖
𝑖∑︁
𝑗=0
P
(
𝑋 𝑗 ∈ P

)
= Y

∞∑︁
𝑗=0
P(𝑋 𝑗 ∈ P)

∞∑︁
𝑖=𝑗

(1 − Y)𝑖 =
∞∑︁
𝑗=0
P(𝑋 𝑗 ∈ P) (1 − Y) 𝑗

By Lemma 13 applied to G and r̂, it follows that

Y

∞∑︁
𝑖=0

(1 − Y)𝑖
𝑖∑︁
𝑗=0
P
(
𝑋 𝑗 ∈ P

)
=
1
Y
R(G, r̂, Y) [P] .

The result therefore follows from (32) and (33). □

We now use Lemma 32 to prove our spam resistance results for T-PPR and T-Min-PPR.

LEMMA 3 (RESTATED). For all Y ∈ (0, 1), T-PPRY is Y-spam resistant on all graph classes. The
cost function that establishes this spam resistance is the T-PPRY itself, normalized over untrusted
nodes.

PROOF. Let G = (V, EG) be a graph, let TG ⊆ V be non-empty, let 𝑐 ∈ TG be the center
chosen by T-PPRY , and let Y ∈ (0, 1). We define our cost function by 𝐶 [𝑣] := ⌈⌈R(G, 𝑐, Y)⌋⌋ [𝑣].
(Recall that we write ⌈⌈x⌋⌋ := x/| |x| |; here the normalization is necessary since 𝐶 is only defined
on V \ TG.) Let P ⊆ V \ TG, and let H = (V ∪ S, EH) ∈ GP, where V and S are disjoint. Then
T-PPRY (H,TG) = R(H, 𝑐, Y), so by Lemma 32 (applied with A = P and r̂ = 𝑐) we have

T-PPRY (H,TG) [S ∪ P] ≤ Y−1R(G, 𝑐, Y) [P] ≤ 𝐶 [P]/Y,
as required by the definition of spam resistance. □

THEOREM 11 (RESTATED). For any Y ∈ (0, 1) and any positive integer 𝑘 , T-Min-PPR𝑘,Y is (Y/3𝑘)-
spam resistant on 𝑛-vertex graphs in G with worst-case mixing time at most 1/(3Y (3+ log2 𝑛)). A cost
function that establishes this spam resistance is the average of the cost functions of the component
T-PPRs.

PROOF. Let G = (V, EG) ∈ G have 𝑛 vertices and satisfy 𝜏G ≤ 1/(3Y (2 + log2 𝑛)), and let TG ⊆ V
be non-empty. Let K be the subset of TG chosen by T-Min-PPR𝑘,Y ; thus |K| ≤ 𝑘. (Recall that K
depends only on TG, not on H.) We will then define our cost function by

𝐶 [𝑣] :=
⌈⌈∑︁
𝑐∈K

R(G, 𝑐, Y)
)⌋⌋

[𝑣] for all 𝑣 ∈ V \ TG .

In order to bound the cost function later, it helps to do the normalization explicitly. Let 𝛾 (𝑣) =
1
|K |

∑
𝑐∈K R(G, 𝑐, Y) [𝑣] and 𝑍 =

∑
𝑣∈V\TG 𝛾 (𝑣). For 𝑣 ∈ V \ TG, 𝐶 [𝑣] = 𝛾 (𝑣)/𝑍 . We will use the fact

(which we will prove shortly) that

𝐶 [P] ≥ 1
|K|

∑︁
𝑐∈K

R(G, 𝑐, Y) [P] . (34)

To establish (34), note that

𝐶 [P] = 1
𝑍

∑︁
𝑣∈P

𝛾 (𝑣) = 1
|K|𝑍

∑︁
𝑣∈P

∑︁
𝑐∈K

R(G, 𝑐, Y) [𝑣] = 1
|K|𝑍

∑︁
𝑐∈K

R(G, 𝑐, Y) [P] .

So (34) follows from 𝑍 ≤ 1, which follows from the following calculation.

𝑍 =
∑︁

𝑣∈V\TG

𝛾 (𝑣) ≤
∑︁
𝑣∈V

𝛾 (𝑣) = 1
|K|

∑︁
𝑐∈K

R(G, 𝑐, Y) [V] = |K|
|K| = 1
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Let P ⊆ V \ TG, let H = (V ∪ S, EH) ∈ GP, where V and S are disjoint, and let K′ be the maximal
coherent subset of K chosen by T-Min-PPR𝑘,Y . Then to prove the result, it suffices to show that

Rmin (H,K′, Y) [S ∪ P] ≤ 3𝑘
Y
𝐶 [P] . (35)

For convenience, we define

𝑀 (G) [𝑣] := min{R(G, 𝑐, Y) [𝑣] : 𝑐 ∈ K} for all 𝑣 ∈ V,
𝑀 (H) [𝑣] := min{R(H, 𝑐, Y) [𝑣] : 𝑐 ∈ K} for all 𝑣 ∈ V ∪ S.

(Note that 𝑀 (H) [𝑣] is defined in terms of K, not K′.) We now split into two cases depending on the
value of 𝑀 (H) [V].
Case 1: 𝑴 (H)[V] ≤ 1/3. In this case, we will argue that the spammer has had to pay so high
a price that the behavior of T-Min-PPR𝑘,Y is irrelevant. We first use the assumption that 𝜏G ≤
1/(3Y (3 + log2 𝑛)) to prove that 𝑀 (G) [V] ≥ 2/3. By Lemma 25, for all 𝑐 ∈ T and all 𝑣 ∈ V with
R(G) [𝑣] ≠ 0,

R(G, 𝑐, Y) [𝑣] ≥
(
1 − Y𝜏G

(
3 − log2 R(G) [𝑣]

) )
R(G) [𝑣] .

Summing over all such 𝑣 ∈ V and using the fact that 𝐺 ∈ G1/3Y (3+log2 𝑛) , we obtain

𝑀 (G) [V] ≥ 1 − Y𝜏G
(
3 + 𝐻 (R(G))

)
≥ 1 − Y𝜏G (3 + log2 𝑛) ≥ 2/3. (36)

Now, for each 𝑣 ∈ V ∪ S, let 𝜒 (𝑣) be an arbitrary vertex 𝑐 ∈ K such that 𝑀 (H) [𝑣] = R(H, 𝑐, Y) [𝑣].
For all 𝑐 ∈ K, let Bc := {𝑣 ∈ V : 𝜒 (𝑣) = 𝑐}. Then we have

𝑀 (G) [V] −𝑀 (H) [V] ≤
∑︁
𝑐∈K

(
R(G, 𝑐, Y) [Bc] − R(H, 𝑐, Y) [Bc]

)
=
∑︁
𝑐∈K

( (
1 − R(G, 𝑐, Y) [V \ Bc]

)
−
(
1 − R(H, 𝑐, Y) [(S ∪ V) \ Bc]

) )
≤
∑︁
𝑐∈K

(
R(H, 𝑐, Y) [(V \ Bc) ∪ S] − R(G, 𝑐, Y) [(V \ Bc) \ P]

)
.

Using Lemma 32, applied to each term in the sum with A = V \ Bc, it follows that

𝑀 (G) [V] −𝑀 (H) [V] ≤
∑︁
𝑐∈K

1
Y
R(G, 𝑐, Y) [P] .

Hence by (34), we have

𝑀 (G) [V] −𝑀 (H) [V] ≤ |K|
Y
𝐶 [P] ≤ 𝑘

Y
𝐶 [P] .

Recall that 𝑀 (H) [V] ≤ 1/3 by hypothesis, and 𝑀 (G) [V] ≥ 2/3 by (36). Thus

𝐶 [P] ≥ Y

3𝑘
≥ Y

3𝑘
Rmin (H,K′, Y) [S ∪ P],

so (35) holds as required.

Case 2: 𝑴 (H)[V] > 1/3. In this case, there exists 𝑣 ∈ V such that 𝑀 (H) [𝑣] > 0, so K is coherent.
Hence K′ = K. By the definition of Rmin, it follows that

Rmin (H,K′, Y) [S ∪ P] = 𝑀 (H) [S ∪ P]
𝑀 (H) [S ∪ V] ≤ 𝑀 (H) [S ∪ P]

𝑀 (H) [V] ≤ 3𝑀 (H) [S ∪ P]

≤ 3
∑︁
𝑐∈K

R(H, 𝑐, Y) [S ∪ P] .
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By Lemma 32, applied with A = P, and again using (34) it follows that

Rmin (H,K′, Y) [S ∪ P] ≤ 3
Y

∑︁
𝑐∈K

R(G, 𝑐, Y) [P] ≤ 3|K|
Y

𝐶 [P] ≤ 3𝑘
Y
𝐶 [P] .

Thus (35) holds in all cases, as required. □

C EXPERIMENTAL EVALUATION OF PAGERANKS
In this section, we evaluate the performance of four ranking functions on an actual web graph:
Min-PPR, Median-PPR, UPR, and Mean-PPR, the componentwise mean of PPRs. The graph is
WEBSPAM-UK2007 [University of Milan Laboratory of Web Algorithmics, 2007], which consists of
114,529 hosts, 5,709 of which have been labeled as trusted and 344 as spam. We evaluate Min-PPR,
Median-PPR and Mean-PPR on constituent PPRs based on picking centers at random from among
the trusted sites. We consider an empirical evaluation of spam resistance and distortion on a graph
that has already been spammed, so we must modify the definitions to suit our needs, as described
below. For each ranking function we evaluate:

Spam Resistance. We cannot evaluate spam resistance directly using the definition, since we do
not know what the pre-spam graph is, but we can evaluate the spam rank, or the sum of the ranks
assigned to all nodes labeled spam. In addition to the total ranking for all spammers, we evaluate
spam ranks for each ranking function by ordering each node in the graph according to rank and
then counting the number of spam sites in each decile. This view of the spam rankings ensures
that spam-resistance benefits are well distributed across the ranking vector, rather than potentially
reflecting a difference for only a few bad sites.

Ideally, an optimal spam-resistant ranking function would not inadvertently penalize non-spam
sites in an effort to assign low rank to spammers. In order to assess this potential trade-off, we
measure the trusted rank, or the sum of the ranks of trusted sites, in addition to the spam rank.
Analogously to spam rank, we also compute the distribution of trusted sites in each decile of rank.

Distortion. Since our definition of distortion applies only to strongly connected graphs, for our
experiments, we first restrict to the largest strongly connected component of the graph and renormalize
each ranking vector. We then compute distortion for UPR, Min-PPR, Mean-PPR and Median-PPR
using the stationary distribution on the largest strongly connected component as the reference ranking.
We use a value of 𝛿 = 2, and we also tested 𝛿 values of 2.5, 3 and 4, but the differences were minimal.

Stability. Since the ranking functions in this paper rely on selecting a set of trusted centers, we
would like to examine how sensitive the results are to an accurate assessment of which sites are indeed
trusted. Ideally, the spam resistance of a ranking would not swing wildly if a “wrong” center made
its way into the trusted set. Thus, we evaluate the stability of the ranking functions by measuring
the changes in rank produced by using maximally bad sites as centers. Specifically, we compute
the multiplicative changes in spam rank and trusted rank for a set of experiments run entirely with
known spam sites as centers, relative to the same measurements on a set of trusted centers. This
metric is not a feature of our theoretical analysis, but provides interesting additional insight in the
experimental results. In particular, stability will help distinguish between Min-PPR and Median-PPR,
which both perform well under the other three metrics.

Results. We find:

Spam Rank and Trusted Rank: We find that UPR has spam rank that is 192% higher than Mean-,
Median- and Min-PPR, on average, as expected from the theoretical analysis. We find that
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Mean-, Median- and Min-PPR have similar trusted rank once 𝑘 is at least 3, and that Min-PPR
has 26% higher spam rank than Mean- and Median-PPR on average.

Distortion: We find that UPR has distortion that is on average 47 times higher than Min- and
Median-PPR, and the distortion of Mean-PPR is 15 times higher.

Stability: Although Min-PPR and Median-PPR are roughly comparable in terms of spam rank,
trusted rank and distortion, when we compute both functions using randomly selected spam
nodes as centers, Min- PPR shows greater stability. The Median-PPR spam ranks jump by an
average of 68% and trusted ranks fall by 19%, while for Min-PPR, the spam rank and trusted
rank change by 20% and -2%, respectively. We posit that the instability of Median-PPR is due
to the weak closure of the median operator and present evidence to support this hypothesis.

Furthermore, we find that in all cases, picking three centers is enough to achieve most of the
benefits of these ranking functions, so the computational cost is only a factor of three higher than
that of UPR.

We conclude that Min-PPR has an attractive combination of spam rank, trusted rank, distortion,
stability and computational cost, in accordance with the theoretical results in this paper.

C.1 Experimental Setup
C.1.1 The Web Graph. We employed the web graph dataset WEBSPAM-UK2007 [University of
Milan Laboratory of Web Algorithmics, 2007], which is based on a crawl of web pages in the .UK
domain that were labeled by volunteers for research purposes. The dataset contains 114,529 hosts
with directed edges between them denoting webpage outlinks. Some of the hosts are labeled as spam
(344 hosts), or normal (5,709 hosts, which we refer to as trusted). The largest strongly connected
component of the graph has 59,160 nodes, with 134 spam nodes and 3,167 trusted nodes.

C.1.2 Parameters of the Experiments. We compute UPR, Mean-PPR, Min-PPR and Median-
PPR for various choices of the reset probability Y, and where applicable, various numbers of trusted
centers 𝑘 and subsets of the trusted sites used as centers.

We ran 50 independent trials for each 𝑘 ∈ {1, 2, . . . , 30} and each Y ∈ {0.15, 0.05, 0.01, 0.001}. For
the value of Y, 0.15 was selected based on the historical precedent from [Page et al., 1999] of using
this reset probability for PageRank, and the smaller values were chosen based on our theoretical
results implying that smaller Y yields better outcomes. Of these four, we find that Y = 0.15 and
Y = 0.01 were representative, so these are the ones reported.

For a given 𝑘, the trusted centers were selected from the trusted sites in the largest strongly
connected component. Sites were selected independently at random, according to a distribution
of weights corresponding to their relative ranks in the stationary distribution. This reference rank-
weighted selection is consistent with Theorem 10.

For Min-PPR, Median-PPR and Mean-PPR, each point in Figures 2, 4 and 6 reflects the average
rank/distortion over all 50 trials for each value of 𝑘 . In Figure 3 and Figure 5, each decile bar reflects
the average count over all trials and all values of 𝑘 . UPR does not select specific centers, and therefore
does not vary with 𝑘 .

To run the experiments, we first computed a uniform PageRank ranking vector and PPRs for
all centers for each value of the reset probability Y using the python networkx library pagerank()
function. We selected a tolerance for convergence of 10−12 after testing various tolerance levels,
and determining that smaller tolerances did not significantly impact the results. For rankings with
multiple trusted centers, the pointwise averages, minimums and medians are then computed from
the PPRs to produce the Mean-, Min- and Median-PPR ranking vectors, respectively. Min- and
Median-PPR are normalized so that the total rank of the graph is 1.0.
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Fig. 2. Sum of ranks of all labeled spam sites for each ranking function; lower is better. The x-axis
indicates the number of trusted centers, 𝑘, used for Min-PPR, Median-PPR and Mean-PPR. Each
point represents the average sum of spam ranks over 50 independent trials. Min-PPR, Median-PPR,
and Mean-PPR exhibit substantially lower spam ranks than UPR across all 𝑘.

For the stability experiment, we repeated the spam resistance experiments using centers selected
entirely from the set of spam sites. We ran 10 independent trials for 𝑘 = 3 centers. In Section C.2, we
observe that the spam resistance and distortion benefits for Min- and Median-PPR are achievable
with as low as three centers, which informed the selection of 𝑘 used here. As with the trusted sites, the
spam centers were randomly selected with probabilities determined by their ranks in the stationary
distribution. We then compared the spam resistance metrics – total spam ranks and total trusted ranks
– to the same metrics for 𝑘 = 3 trusted centers, as described in Section C.2.4.

C.2 Experimental Results
In this section, we discuss the results of the experiments described in Section C. The results are also
presented for each metric and Y = 0.15, 0.01 in Figure 2 through Figure 7.

C.2.1 Spam Rank Results. Based on our theoretical results, we would expect each of Mean-,
Min- and Median-PPR to perform better than UPR in terms of spam resistance. Indeed, as shown in
Figure 2, all three of these ranking functions assign significantly lower rank to the spam sites than
UPR across all 𝑘 .

For Y = 0.15, the total rank assigned to spammers by UPR is 0.0021, while the average spammer
ranks over all trials and 𝑘 were 0.0008 for Min-PPR, 0.0006 for Median-PPR, and 0.0004 for Mean-
PPR, for an overall reduction of between 63% and 74%. Similarly, for Y = 0.01, the total spam rank
for UPR is 0.0019, while the total spam ranks average 0.0008 for Min-PPR, and 0.0007 for Median-
and Mean-PPR, for a reduction of between 57% and 62%.

Of the three PPR ranking functions, Min-PPR shows the highest spam rank, which is also expected.
Averaged over all 𝑘 and over Y ∈ {0.15, 0.01}, the total spam rank for Min-PPR is 24% higher than
for Mean-PPR. Median-PPR performs the best overall, with 3% lower average spam rank than
Mean-PPR, with an even better improvement of 15% seen for Y = 0.01.

Figure 3 demonstrates that the improvements in spam resistance over UPR are seen across the
ranking vector, and not just in total spam rank. When we order all nodes of the graph by rank and
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Fig. 3. Count of spam sites in each decile of rank for each ranking function. The x-axis indicates the
decile when each node in the web graph is ordered according to rank, so 10 is the highest decile and
a lower count in high deciles is better. Each bar represents the average count of spammers over each
𝑘 ∈ {1, 2, . . . 30} and 50 independent trials for each 𝑘. Min-PPR, Median-PPR and Mean-PPR exhibit a
general shift of spammers to deciles 3-5 from deciles 8-10 (Y = 0.15) or 9-10 (Y = 0.01) compared to
UPR.
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Fig. 4. Sum of ranks of all labeled trusted sites for each ranking function; higher is better. The x-axis
indicates the number of trusted centers, 𝑘, used for Min-PPR, Median-PPR and Mean-PPR. Each
point represents the average sum of trusted ranks over 50 independent trials. For Mean-PPR, we
also plot the trusted ranks less the contributions from the “self-ranks” of each center (the rank of
the center in its PPR over 𝑘). Min-PPR, Median-PPR and the no-self-ranks version of Mean-PPR all
exhibit roughly similar trusted rank levels to UPR.

divide them into deciles, UPR assigns many more spammers to the highest deciles (8-10) than the
other three ranking functions, and fewer spammers to most of the deciles of lower rank.
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Fig. 5. Count of trusted sites in each decile of rank for each ranking function. The x-axis indicates the
decile when each node in the web graph is ordered according to rank, so 10 is the highest decile and
a higher count in high deciles is better. Each bar represents the average count of trusted sites over
each 𝑘 ∈ {1, 2, . . . 30} and 50 independent trials for each 𝑘. Min-PPR, Median-PPR and Mean-PPR
exhibit a roughly similar distribution to UPR, with a slight increase in trusted sites in the highest decile.
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Fig. 6. Distortion by number of trusted centers 𝑘 for each ranking function; lower is better. Each point
for Min-PPR, Median-PPR and Mean-PPR represents the average distortion over 50 independent
trials for each 𝑘. Min- and Median-PPR exhibit substantially lower distortion than Mean-PPR, which
exhibits substantially lower distortion than UPR.

Additionally, our experimental results demonstrate that these benefits are achievable with even
a very low number of trusted centers – 2 for Min-PPR and 3 for Median-PPR – and increasing the
centers generally does not significantly increase the spam resistance.

C.2.2 Trusted Rank Results. Examining the trusted rank diagnostics, we see that all four ranking
functions are relatively close in trusted site ranking, implying that not much trusted rank is traded
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Fig. 7. Distortion zoomed in on Min-PPR and Median-PPR. The data is identical to Figure 6, but the
scale of the y-axis is more granular in the lower distortion values, allowing greater visibility of Min-PPR
and Median-PPR.

for the increased spam resistance. In fact, the plots of trusted sites in each decile of rank in Figure 5
show a modest shift of trusted sites towards the highest decile (10) for Min-, Median- and Mean-PPR
compared to UPR. For the sum of trusted ranks shown in Figure 4, we note that since a PPR assigns
at least Y rank to its center, and since the centers used are trusted sites, the trusted rank statistic will
be inflated for Mean-PPR. Therefore, examining the rank of trusted sites apart from the contribution
from the center nodes is more informative, and this statistic is plotted in the green dashed line.
This adjustment does not need to be made to Min- and Median-PPR, since the min and median
operations prevent large ranks at the centers. After applying this correction for Mean-PPR, we also
conclude from this plot that all four ranking functions show similar overall trusted rank, with Min-
and Median-PPR improving by 16-18% over UPR.

C.2.3 Distortion Results. For distortion, once again all three PPR ranking functions exhibit
a significant improvement over UPR, as shown in Figure 6. This is particularly interesting with
respect to the relative performance of Mean-PPR, which we would expect to have high distortion
in the neighborhood of each trusted center due to the concentration of the reset vector. We find that
Mean-PPR’s unexpectedly low distortion when compared to UPR is explained by the observation
that, for Mean-PPR, the distortion is typically maximized at the centers, which already tend to have
high reference rank because they are trusted. For UPR, the distortion is maximized at nodes with
virtually no reference rank, since all nodes receive an equal share of reset in UPR and therefore have
a fairly high minimum rank.

Although better than UPR, the distortion of Mean-PPR is still higher than those of Min- and
Median-PPR. This aligns as well with the theoretical results in this paper. Note that for one center,
each of Min-, Median- and Mean-PPR is just a PPR, so the three functions exhibit equal distortion,
and similarly, Median- and Mean-PPR are equal for 𝑘 = 2 since the median of two numbers is their
mean.

For Y = 0.15, the distortion of UPR is 31,059, while the average distortion over all trials and all 𝑘
is 274 for Min-PPR, 1,051 for Median-PPR, and 9,482 for Mean-PPR. For Y = 0.01, the distortion of
UPR is 15,480, while the average distortion over 𝑘 is 139 for Min-PPR, 533 for Median-PPR, and
4,647 for Mean-PPR. A zoomed-in view in Figure 7 shows that while the distortion is quite low for
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Table 1. Stability comparison for 3 centers and Y = 0.15

spam ranks trusted ranks

spam
centers

trusted
centers difference

spam
centers

trusted
centers difference

Min-PPR 0.0009 0.0007 28.5% 0.0453 0.0466 -2.8%
Median-PPR 0.0011 0.0005 105.1% 0.0450 0.0587 -23.2%

Table 2. Stability comparison for 3 centers and Y = 0.01

spam ranks trusted ranks

spam
centers

trusted
centers difference

spam
centers

trusted
centers difference

Min-PPR 0.0008 0.0008 12.2% 0.0412 0.0420 -2.0%
Median-PPR 0.0010 0.0007 38.5% 0.0409 0.0469 -12.8%

both Min-PPR and Median-PPR when 𝑘 is at at least 3, Min-PPR dominates under this metric for
all 𝑘. Again, we see that increasing the trusted centers beyond 𝑘 = 3 does not lower the distortion
significantly.

C.2.4 Stability Results. We compared the spam resistance of each ranking function using three
spam centers to our results for three trusted centers. The results in Tables 1 and 2 summarize average
spam and trusted ranks over all trials, along with the overall percentage change produced by running
each function with spam centers instead of trusted centers. Min-PPR exhibits greater stability under
this variation in centers, with a 12-28% increase in spam ranks and a 2-3% decrease in trusted ranks,
versus spam rank increases of 39-105% and trusted rank decreases of 13-23% for Median-PPR.

We hypothesize that the relative instability of Median-PPR is due to the weak closure of the median
operator: if the effective Y of the PageRank random walk represented by Median-PPR is large, then
random paths will be short, and the PageRank will concentrate around the nodes that receive reset.
Note that nodes throughout the graph may receive reset in a Median-PPR, not just the 𝑘 PPR centers.
This is because the closure of median only guarantees that there exists some (reset vector, Y) pair that
will yield the Median-PPR as a PageRank. If the (induced) reset vector for Median-PPR with spam
centers is relatively rich in spammers and the Y is large, then this would explain the instability of
Median-PPR.

We selected a representative triple of trusted sites and a triple of spam sites to compute the blowup
in Y. To compute the effective Y, we found the minimum Y with a non-negative reset vector. As
expected, since the min operator is strongly closed, the effective Y for Min-PPR was the original
Y: either 0.15 or 0.01, respectively. For Median-PPR, the input Y = 0.15 blows up to an effective Y

of 0.40 with trusted centers and 0.47 for spam centers. When the input Y = 0.01, the effective Y for
Median-PPR blows up to 0.22 for trusted centers and 0.36 for spam centers. Thus, the effective Y for
Median-PPR is quite large.

Table 3 summarizes the results of measuring the amount of reset that spam nodes receive, for both
Median-PPR and Min-PPR, when trusted or spam centers are selected. Median-PPR gives spam
nodes higher reset when spam nodes are selected as centers, which, when combined with a much
higher Y, explains why Median-PPR is less stable than Min-PPR.
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Table 3. Sum of spam node reset probabilities

original
Y = 0.15

original
Y = 0.01

3 spam
centers

3 trusted
centers difference

3 spam
centers

3 trusted
centers difference

Min-PPR 0.0007 0.0004 57.2% 0.0007 0.0004 52.6%
Median-PPR 0.0011 0.0004 165.3% 0.0010 0.0006 70.5%

C.3 Conclusion
We tested UPR, Min-PPR, Median-PPR, and Mean-PPR on a real-world web graph, in order to
evaluate their performance under our formalized notions of spam resistance and distortion. The
experimental outcomes conform closely with the theoretical results. Namely, UPR has low spam
resistance and also suffers from high local distortion. Additionally, while Mean-PPR is significantly
more spam resistant than UPR, the distortion around the trusted centers is still high.

Min-PPR and Median-PPR both exhibit promising performance under both metrics, with Median-
PPR performing the best in the spam resistance trials and Min-PPR performing the best with respect
to distortion. Finally, we analyzed the stability of both ranking functions under the choice of PPR
centers, using a particularly extreme example of a “wrong” choice involving only labeled spam
centers, and found Min-PPR to be far more stable than Median-PPR. We show evidence that suggests
that the difference in stability may be related to the weaker PageRank closure properties of the
median operator compared to min.

Our experiments also showed that the benefits of Min-PPR are achievable even when using as few
as two trusted centers. Our results support our theoretical conclusion that Min-PPR enjoys a strong
combination of high spam resistance and low distortion with low computational cost.
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