158 research outputs found

    Human and climatic impact on mires: a case study of Les Amburnex mire, Swiss Jura Mountains

    Get PDF
    Modern period long-term human and climatic impacts on a small mire in the Jura Mountains were assessed using testate amoebae, macrofossils and pollen. This multiproxy data analysis permitted detailed interpretations of local and regional environmental change and thus a partial disentanglement of the different variables that influence long-term mire development. From the Middle Ages until a.d. 1700 the mire vegetation was characterised by ferns, Caltha and Vaccinium, but then abruptly changed into the modern vegetation characterised by Cyperaceae, Potentilla and Sphagnum. The cause for this change was most probably deforestation, possibly enhanced by climatic cooling. A decrease in trampling intensity by domestic animals from a.d. 1950 onwards allowed Sphagnum growth and climatic warming in the a.d. 1980s and 1990s may have been responsible for considerable changes in the species composition. The mire investigated is an example of the rapid changes in mire vegetation and peat development that occurred throughout the central European mountain region during the past centuries as a result of changing climate and land-use practice. These processes are still active today and will determine the future development of high-altitude mire

    A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire

    Get PDF
    Our palaeoecological study covers 73years of history (1929-2002) of a kettle hole peatland inundated by water from a nearby, dammed lake. Testate amoebae, pollen and non-pollen palynomorphs (NPPs) were used to track the shift to wetter conditions in the peatland. Lead-210 was used to try and construct the chronology. We investigated how peatland testate amoebae communities changed since the damming of a nearby river. Furthermore, we evaluated how rapidly local vegetation responded to the increase in wetness, and how vegetation changes correlated with shifts in testate amoebae and NPPs. The Mukrza kettle hole provided palaeoecological evidence of trophic state and hydrological changes since the lake filled with water in 1929. Three stages of development were revealed. The first two were associated with initial inundation, and the third was related to Sphagnum expansion and acidification. Quantitative reconstruction of groundwater level and pH, inferred using testate amoebae, confirmed our hypotheses about changes in hydrology and trophic state. Subfossil desmid remains lend qualitative support to the reconstruction. The ecology of several testate amoeba taxa is discussed in the context of succession and population establishment. There was complete species replacement since the time of inundation. Our investigation has two important applied aspects: (1) it enables prediction of the response of peatlands to a rise in water table on restored sites; and (2) it provides analogues for palaeoclimatological studies. The history of the Mukrza mire is an example of how palaeoecological studies can be used to assess the degree of change in peatlands transformed by human activitie

    Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae

    Get PDF
    We present the results of high-resolution, multi-proxy palaeoecological investigations of two parallel peat cores from the Baltic raised bog Mechacz Wielki in NE Poland. We aim to evaluate the role of regional climate and autogenic processes of the raised bog itself in driving the vegetation and hydrology dynamics. Based on partly synchronous changes in Sphagnum communities in the two study cores we suggest that extrinsic factors (climate) played an important role as a driver in mire development during the bog stage (500–2012 CE). Using a testate amoebae transfer function, we found exceptionally stable hydrological conditions during the last 2000 years with a relatively high water table and lack of local fire events that allowed for rapid peat accumulation (2.75 mm/year) in the bog. Further, the strong correlation between pH and community-weighted mean of testate amoeba traits suggests that other variables than water-table depth play a role in driving microbial properties under stable hydrological conditions. There is a difference in hydrological dynamics in bogs between NW and NE Poland until ca 1500 CE, after which the water table reconstructions show more similarities. Our results illustrate how various functional traits relate to different environmental variables in a range of trophic and hydrological scenarios on long time scales. Moreover, our data suggest a common regional climatic forcing in Mechacz Wielki, Gązwa and Kontolanrahka. Though it may still be too early to attempt a regional summary of wetness change in the southern Baltic region, this study is a next step to better understand the long-term peatland palaeohydrology in NE Europ

    Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands

    Get PDF
    Testate amoebae are now commonly used in paleoenvironmental studies but little is known of their taphonomy. There is some experimental evidence for differential preservation of some testate amoeba shell types over others, but it is unclear what, if any impact this has on palaeoenvironmental reconstruction. To investigate this issue we looked at palaeoecological evidence for the preservation of different shell types. We then investigated the possible impact of selective preservation on quantitative palaeoenvironmental inference. We first used existing palaeoecological data sets to assess the vertical patterns of relative abundance in four testate amoeba shell types: (1) shells made of secreted biosilica plates (idiosomes, e.g. Euglypha), (2) idiosomes with thick organic coating (Assulina), (3) proteinaceous shells (e.g. Hyalosphenia), (4) shells built from recycled organic or mineral particles (xenosomes) (e.g. Difflugia, Centropyxis). In three diagrams a clear pattern of decay was only observed for the idiosome type. In order to assess the implications of differential preservation of testate amoeba taxa for paleoenvironmental reconstruction we then carried out simulations using three existing transfer functions and a wide range of scenarios, downweighting different test categories to represent the impact of selective test decomposition. Simulation results showed that downweighting generally reduced overall model performance. However downweighting a shell type only produced a consistent directional bias in inferred water table depth where that shell type is both dominant and shows a clear preference along the ecological gradient. Applying a scenario derived from previous experimental work did not lead to significant difference in inferred water table. Our results show that differential shell preservation has little impact on paleohydrological reconstruction from Sphagnum-dominated peatlands. By contrast, for the minerotrophic peatlands data-set loss of idiosome tests leads to consistent underestimation of water table depth. However there are few studies from fens and it is possible that idiosome tests are not always dominant, and/or that differential decomposition is less marked than in Sphagnum peatlands. Further work is clearly needed to assess the potential of testate amoebae for paleoecological studies of minerotrophic peatland

    Contrasting Species—Environment Relationships in Communities of Testate Amoebae, Bryophytes and Vascular Plants Along the Fen-Bog Gradient

    Get PDF
    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiatio

    Towards quantitative reconstruction of peatland nutrient status from fens

    Get PDF
    In rich fens, unlike bogs, the key drivers structuring testate amoeba communities are related to nutrient status, suggesting the potential for transfer functions to quantitatively reconstruct changing nutrient status from palaeoecological records. Such records could be useful tools to investigate the long-term impacts of pollution and landscape change. Here, we derive and test transfer functions for pH, water-table depth, conductivity and Ca and Mg concentrations using a data set from Polish fens. Results show that transfer functions for Ca and conductivity have apparent predictive power for surface samples; these models will require further validation and testing with palaeoecological data. Testate amoeba transfer functions for fen nutrient status may be a valuable addition to the peatland palaeoecologist’s tool-kit, although further work will be required to demonstrate their usefulness in practic

    Responses of vegetation and testate amoeba trait composition to fire disturbances in and around a bog in central European lowlands (northern Poland)

    Get PDF
    Compared to boreal or Mediterranean biomes, the influence of fire on peatlands in Central Europe is not well studied. We aim to provide first analysis of statistically significant charcoal-inferred fire events from a peatland from central European lowlands, spanning the period of the last 650 years, and define peatland vegetation and microbial trait-related responses to local fire events. Here, we reconstructed regional and local fire activity from Bagno Kusowo bog (Poland) using high-resolution microscopic charcoal and macroscopic charcoal and its morphotypes, inferring past fire regimes using numeric analyses. We compared fire data with extra-local (pollen) and local (plant macrofossils, testate amoebae (TA) and their trait composition) proxies. Our data show that within the chronological uncertainties, regional fires recorded in the peat core coincide with historically-documented fires. Macroscopic charcoal analysis suggests 3–8 local fire events, while fire frequency varied between 0 and 2 events/1000 years. Wood charcoal was dominant throughout the profile, pointing to forest fires in close proximity to the peatland. Local fire activity was the most intensive in the 17th century, when the water table was at its lowest. The abundance of Sphagnum spp. declined, whereas vascular plants, mixotrophs and TA with proteinaceous shells were significantly positively correlated to fire. Xenosomes were significantly negatively correlated to fires, and they responded to water table lowering. We show that the peatlands’ vegetation recovered from low-intensity and short-lasting disturbances and, to some extent, maintained “pristine” local vegetation cover with Sphagnum as the dominant taxon. TA traits common before disturbances, mainly mixotrophs and TA with proteinaceous shells, temporarily re-appeared after fire. We conclude that TA communities in peatlands are good bioindicators of disturbances

    Kettle-hole peatlands as carbon hot spots : Unveiling controls of carbon accumulation rates during the last two millennia

    Get PDF
    Funding Information: We would like to thank the anonymous reviewers for their comments that helped us to improve the manuscript. The research was funded by the National Science Centre (Poland), grant 2015/17/B/ST10/01656.Peer reviewe
    • 

    corecore