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Abstract Modern period long-term human and cli-

matic impacts on a small mire in the Jura Mountains

were assessed using testate amoebae, macrofossils and

pollen. This multiproxy data analysis permitted de-

tailed interpretations of local and regional environ-

mental change and thus a partial disentanglement of

the different variables that influence long-term mire

development. From the Middle Ages until A.D. 1700

the mire vegetation was characterised by ferns, Caltha

and Vaccinium, but then abruptly changed into the

modern vegetation characterised by Cyperaceae,

Potentilla and Sphagnum. The cause for this change

was most probably deforestation, possibly enhanced by

climatic cooling. A decrease in trampling intensity by

domestic animals from A.D. 1950 onwards allowed

Sphagnum growth and climatic warming in the A.D.

1980s and 1990s may have been responsible for con-

siderable changes in the species composition. The mire

investigated is an example of the rapid changes in mire

vegetation and peat development that occurred

throughout the central European mountain region

during the past centuries as a result of changing climate

and land-use practice. These processes are still active

today and will determine the future development of

high-altitude mires.

Keywords Testate amoebae � Macrofossils �
Pollen analysis � Human impact � Climate change �
Jura Mountains

Introduction

Mire ecosystems will respond individually to climate

and land-use changes according to local conditions

such as hydrology, bedrock and altitude. In order to

understand the long-term development of mire eco-

systems, detailed investigations of mires of different

types and from different regions are required. Palae-

oecological investigations capable of capturing long-

term changes have been concentrated on relatively

undisturbed ombrotrophic bogs, as these provide the

best archives for past environmental change. However,

the current investigation is made on a site impacted by

human activities—a small (0.2 ha) mire located in the

middle of a traditional pasture woodland in the Jura

Mountains.

Mountain mires constitute a small but important

landscape element, both as important ecological com-

ponents in themselves and as natural archives for

environmental change. Many such high-altitude central

European mires show strong decomposition and/or

disturbance in the upper peat stratigraphy (e.g. van der

Knaap et al. 2000; Shotyk 2002; Roos-Barraclough

et al. 2004; Sjögren et al. 2005), suggesting major

environmental changes in the past centuries. It is the

upper part of the peat that is of interest here, and the
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present investigation can be seen as a case study of the

long-term effect of environmental change on mire

ecosystems and peat development in general, and on

grazed mountain mires in particular.

The effects of climate and land-use change on mires

during the last millennium can seldom be clearly sep-

arated because of interaction, both directly in how the

mire vegetation responds to another type of environ-

mental change, and indirectly as climate change affects

land-use practices (and to some extent vice versa). Still

it is possible to determine to some degree which

parameter is the most important for a given change in

the environment, and how this may interact with other

important changes (Hausmann et al. 2002). Multiproxy

approaches have been shown to be the best method for

the interpretation of complex environmental change

(Ammann et al. 2000; Birks et al. 2000; Birks and Birks

2006). In this paper, testate amoebae, macrofossils,

wetland pollen, upland pollen and peat characteristics

have been analysed in order to study human and cli-

matic impacts on the mire development.

Site description

The landscape in the higher part of the Jura Mountains

along the border between France and Switzerland

(Fig. 1) is a mosaic of approximately equal parts of

conifer forests, open and wooded pastures. The woo-

ded pastures are dominated by Picea abies, while Abies

alba, Fagus sylvatica and scattered Acer pseudoplat-

anus are found only in more forested areas. The local

climate is cold and wet (annual means ca. 3�C and

1,600 mm/year), but periodic droughts may occur be-

cause water is quickly drained through the permeable

limestone bedrock. Traditional land-uses are summer

grazing and forestry (Gillet and Gallandat 1996). In the

past decades the area has become popular for recrea-

tional activities such as hiking, cross-country skiing and

picnicking.

The area around the site investigated has been un-

der protection since 1973 as part of the 70 km2 Parc

Jurassien Vaudois. Written sources reveal that pastures

were already well established in the Amburnex valley

in A.D. 1301, and charcoal production in this part of the

Jura Mountains is indicated from the 16th century

(Rochat 1995). The exploitation of the forest seems to

have been very intense during the 18th and 19th cen-

turies until different cantonal laws allowed an organ-

ised forestry from A.D. 1902.

The mire Les Amburnex (Lat 46�32¢23†N, Long

6�13¢54†E, 1,370 m a.s.l.) is situated on the side of

Combe des Amburnex, a small valley 1,300 m a.s.l. The

mire has a peanut-shaped area of approximately

0.2 ha. The markedly raised surface suggests a history

as a raised bog, although strong decomposition along

the edges may have exaggerated the raised appearance.

Large parts of the mire are today overgrown by Picea

and a badger colony is present in the southwestern

driest part. The peat profile (Table 1) was extracted

from the northeastern treeless part. Several test cores

in the northeastern part showed a similar lithology,

while the southwestern part was considered unsuitable

for palaeoecological investigations. The mire was used

for water extraction since the beginning of the last

century by the nearby summer farm and is today

fenced and protected from cattle. The vegetation of the

mire and the valley is described by Vittoz (1997, 1998),

and the vegetation history by Wegmüller (1966) and

Sjögren (2006).

Methods

Laboratory methods and analysis

The peat profile studied was retrieved with a spade as a

0.5 m long monolith. The total peat depth at the sam-

pling point is ca. 3 m, underlain by calcareous clay.

Samples (2 cm3) for testate amoebae analysis were

prepared according to standard procedures (Charman

et al. 2000; Hendon and Charman 1997; Tolonen 1986;

Warner 1990a). Approximately 150 testate amoebae

shells were counted per sample except for the lower

Fig. 1 Overall map. The broken line marks the border between
France and Switzerland. Grey indicates areas above 1,000 m.
Rivers and lakes are shown in black. The study area is marked by
a star
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samples (at 17 and 18 cm), which had low concentra-

tions. At 19 and 20 cm taxa were noted only as present.

Identification follows Charman et al. (2000), Gros-

pietsch (1958), Hoogenraad and de Groot (1940) and

Ogden and Hedley (1980).

The residues from the testate amoebae sample

preparation were used for plant-macrofossil analysis.

The samples were sieved (300 lm mesh) and examined

under a stereoscopic microscope (20–100·). In addition

one slide from each peat sample was prepared for de-

tailed description of peat constituents and examined

under a compound microscope (100–400·). A five-

degree scale represents the peat constituents (e.g.

Sphagnum, Campyliaceae or sedge rootlets) as follows:

1 = <5%, 2 = 5–25%, 3 = 25–50%, 4 = 50–75%, and

5 = 75–100%. Countable fossils such as sedge endo-

carps are presented as absolute values. Macroscopic

charcoal was classified after maximum size in milli-

metre size classes. Available descriptions and keys

were used for identification (Daniels and Eddy 1985;

Grosse-Brauckmann 1975, 1986; Katz et al. 1965, 1977;

Tobolski 2000; Warner 1990b).

Pollen slides were prepared by the acetolysis meth-

od (Berglund and Ralska-Jasiewiczowa 1986; Faegri

and Iversen 1989). Identification used the literature

(Punt and Clarke 1984; Moore et al. 1991; Reille 1992,

1995, 1998; Punt et al. 1995; van Geel et al. 2003) and

the reference collection at the Institute of Plant Sci-

ences in Bern. The pollen values are expressed as

percentages of all upland taxa; wetland and local pol-

len are excluded from the pollen sum. At least 500

upland pollen grains were counted per sample (mean

660). For dry-bulk density measurements peat samples

were dried at 40�C in open containers for 1 week be-

fore weighing (Aaby 1986). Ash content (LOI residue)

was measured on the same samples (drying at 105�C

overnight, heating at 550�C for 4 h; Heiri et al. 2001).

Depth–age relationship

The depth-age model follows an established chronos-

tratigraphy (Sjögren 2006) in which radiocarbon dates

from three peat profiles were combined, including six

radiocarbon dates from the present peat sequence

(Fig. 2). Correlation between the peat cores was

achieved by using the extra-regional pollen assem-

blages. The chronostratigraphy was checked against

regional biostratigraphical markers (van der Knaap

et al. 2000) and gave a maximum deviation of 50 years.

Considering the high accuracy of post-bomb 14C cali-

bration (Goslar et al. 2005; Sjögren et al. 2006) the

precision of the depth-age relationship for the past

50 years is higher, approximately ±5 years. To achieve

a continuous depth-age relationship linear interpola-

tion is used between chronostratigraphic levels. The

deviation from the actual age may thus be somewhat

higher between than on the stratigraphic levels, espe-

cially when the peat accumulation is not constant.

Numerical methods

Numerical analyses were conducted on three data sets:

the testate amoebae assemblage, the wetland pollen

assemblage, and the upland pollen assemblage. No

numerical analyses were conducted on macrofossils,

charcoal or peat characteristics as the qualitative het-

erogeneity was too large.

Assemblage zones were determined statistically

according to the recommendations by Bennett (1996),

by optimal sum-of-squares partitioning (Birks and

Gordon 1985; Birks 1986) and their significance was

tested with the broken-stick method (MacArthur

1957). The uppermost zone boundary for the upland

pollen assemblages at 2.5 cm depth is not considered in

interpretation, as no local ecological significance could

be found; this zone boundary might be an effect of the

yearly fluctuations in pollen accumulation rates (van

der Knaap and van Leeuwen 2003).

Table 1 Peat lithology

Depth (cm) Characteristics

0–11.5 Light brown, loose, well preserved Sphagnum
11.5–14.5 Dark brown, decomposed Sphagnum
14.5–21 Dark brown, compact, decomposed peat
21–25 Black-brown, compact, decomposed peat

Fig. 2 Depth-age relationship for the Les Amburnex mire based
on linear interpolation between chronostratigraphic levels.
Calibrated radiocarbon age-intervals are shown for comparison
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The most important changes within the assemblages

of testate amoebae (42 species/types), wetland pollen (18

species/types, including spores) and upland pollen (133

species/types) were determined using detrended corre-

spondence analysis (DCA, ter Braak and Prentice 1988).

For the wetland pollen and upland pollen assemblages

an additional analysis of the top 18 cm was conducted for

comparison with the testate amoebae data set that cov-

ered that depth. The analysis was performed with CA-

NOCO 4.5 (ter Braak and Šmilauer 1998). Detrending

was made by segment, the data were square-root trans-

formed and rare taxa were downweighted.

The direction of change between samples (positive/

negative) was used to determine the significance of

correlation between the DCA scores of the data sets

(Pearson’s chi-square test with Yates’ continuity cor-

rection; Sokal and Rohlf 1995). The same approach was

used to test for correlation with the NAP value (non-

arboreal pollen), as the scores for the upland DCA

axis 1 in particular are visually similar to the NAP

curve. The low number of samples and low variation in

scores from the first DCA axis (primarily for testate

amoebae and wetland pollen) above 12 cm depth (A.D.

1960) made statistical correlation problematic. The

other statistical correlations are also based on a rather

low number of samples (17–25), and details of the re-

sults should be viewed with some caution. The analysis

was conducted with S-PLUS (Crawley 2002).

In pollen analysis it is preferable (if possible) to use

only the pollen assemblage that derives from the area of

investigation. For interpretations concerning the sur-

rounding mountain landscape the highland pollen

assemblage (i.e. pollen from upland taxa abundant

>1,000 m a.s.l. in the modern vegetation) would be more

accurate than the upland pollen assemblage (i.e. pollen

from all non-wetland taxa, including those from the

Swiss Plateau). In order to test if there are major dif-

ferences in the dynamics of the two data sets the same

numerical methods (zonation and DCA) were applied

for the highland pollen assemblage. The results were

very similar between the data sets and it can be assumed

that the results for the upland pollen assemblage also are

valid for the high parts of the Jura Mountains. As the two

data sets are statistically similar (88% similar direction of

change between 1st DCA axes, P = 0.001), only the

upland pollen assemblage was used for further inter-

pretation. Also this is common practice and requires

fewer assumptions (Wright and Harvey 1963).

Interpretation of proxies

Several proxies were used to study different environ-

mental variables on different spatial scales; the most

important of these were testate amoebae, macrofos-

sils, pollen and charcoal particles. Testate amoebae

indicate local changes in the mire itself (primarily

humidity) on the scale of a few cm (Mitchell et al.

2000). Macrofossils primarily reflect the local vegeta-

tion (Birks and Birks 2003). The degree of decom-

position varies greatly in the profile and few

identifiable plant remains exist below the depth of

15 cm. Pollen and spores from wetland plants reflect

the vegetation on the mire itself and in the immedi-

ately surrounding (wet) minerogenic soil. They can

also be referred to as the local component, i.e. pollen

and spores that originate from within 0 to 20 m of

the edge of the mire (Jacobson and Bradshaw 1981,

Prentice 1985).

The upland pollen assemblage records the landscape

development. There are two major source areas for this

pollen: the Jura Mountains (>1,000 m a.s.l.) and the

Swiss Plateau (<800 m). The source area can partly be

determined on the basis of species composition, but the

difference in general development is small and there is

therefore no need for such separation in the current

context. Where highland pollen (i.e. from taxa abun-

dant >1,000 m a.s.l. in the modern situation) has been

separated it is primarily to confirm the local relevance

of the upland pollen assemblages. The relevant source

area of pollen (RSAP, sensu Sugita 1994) in the area is

estimated as being from 700 to 800 m a.s.l. (Florence

Mazier, personal communication). Note that Picea,

Abies, Fagus and Acer are the only tree taxa that are

present in any numbers in the area above 1,000 m to-

day. Alnus, Corylus and Betula might have grown lo-

cally in earlier times, but the large fluctuations in their

abundance on the Swiss Plateau (Ammann 1988) make

direct assessments from pollen values problematic.

Charcoal particles and dust allow a reconstruction of

past fire intensity at local (macro particles) to regional

(dust particles) scales (Tinner et al. 1998).

Results and interpretation

The main results are presented in three diagrams

(Figs. 3, 4, 5) and described together with short inter-

pretations in Table 2. The results and interpretations

are summarised in Table 3.

Vegetation history of the Les Amburnex mire

Before A.D. 1700 the mire was relative dry, dominated

by Vaccinium and ferns. It is possible that deciduous

trees such as Alnus, Corylus and Betula were growing

on the wet soils close to the mire, but the pollen
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evidence is inconclusive. Pollen of Caltha-type and

Ranunculus aconitifolius-type suggests nearby open

areas on moist soils. Grazing seems to have been

continuous in the area from at least the middle of the

first millennium A.D. (indicated by Hypericum and

Plantago lanceolata) and the surrounding forest was

probably relatively open and/or included small glens.

An increase in openness is indicated during the High

Middle Ages (A.D. 1000–1300), mostly in phase with

the general landscape development of the time (Wil-

liams 2000; Gauthier 2004; Sjögren 2006), but the low

temporal resolution in this part of the pollen diagram

makes it impossible to detect any details. From the

15th century onwards there is an increase in openness

and grazing pressure (indicated by Poaceae, Plantago

media, Compositae Subfam. Cichorioideae and Cru-

ciferae) and it is likely that large open pastures were

present. Cattle also seem to become more common

(indicated by Podospora, a cattle-dung fungus; Jac-

queline van Leeuwen personal communication). Fagus,

Alnus, Corylus and Betula decline at the same time,

suggesting that the species were locally present before

they were cut down or their preferred habitats turned

into pastureland (Fagus is still present in the area).

High values of charcoal particles and dust are present

A.D. 1500–1900 with a strong peak ca. A.D. 1700. These

are probably related to charcoal and glass production

and would imply deforestation of large areas. A small

glass industry was established a few kilometres east of

the site in A.D. 1698 and was active until A.D. 1708

(Piguet 1998), i.e. about the same time as the most

profound changes in the mire and surrounding land-

scape occurred. Some of the charcoal might also come

from burning of brushwood in connection with clear-

ance. The time period of highest openness and grazing

pressure occurred A.D. 1750–1925 (indicated by

Poaceae, Trifolium pratense, Lotus, Botrychium,

Rubiaceae, Plantago media, Compositae Subfam.

Cichorioideae and Plantago montana). The local mire

vegetation also changed in the 18th century. Around

A.D. 1700 Caltha-type, Ranunculus aconitifolius-type,

ferns and Vaccinium decreased, while Cyperaceae,

Fig. 3 Percentage diagram of selected testate amoebae and rotifera (Habrotrocha angusticollis). Lines show ·5 exaggeration of the
percentage values
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Potentilla and Sphagnum spores increased, resulting in

a vegetation similar to today. Around A.D. 1800

Sphagnum spores decreased again and did not reach

high values again until the late 20th century. Mac-

roremains of Sphagnum indicate on the other hand that

Sphagnum was locally present all the time, and the

spore value may be affected by some environmental

variable controlling spore production/dispersal rather

than the presence/absence of the moss.

In A.D. 1950 the previously high but varying water-

table indicated by Phryganella paradoxa (wet; Schön-

born 1962) and Trigonopyxis arcula (dry; Charman

et al. 2000; Mitchell et al. 1999, 2000), became lower.

Sphagnum magellanicum is the most common moss

from this time onwards. This is a lawn species with an

optimum depth to the water-table of 19 cm (Janssens

1989; Dierßen and Dierßen 2001). From the late 1980s

the mire experienced a further decrease in the water-

table together with acidification and hummock devel-

opment (indicated by Sphagnum Sect. Acutifolia, Au-

lacomnium palustre, Assulina seminulum and Arcella

catinus).

The mire is today partially covered by Picea trees.

Picea needles and stomata have been found in the peat

dated to the later half of the 20th century, but a felled

tree was dated to the late 19th century so this is

probably a more accurate date for the establishment of

Picea on the mire. Today small trees are removed to

stop continuing Picea expansion on the mire (Vittoz

1997).

Fig. 4 Diagram of macrofossils, peat characteristics and pollen
percentages of local plants. Percentage values of pollen and
charcoal-dust particles are based on the sum of upland pollen
and spores. Macrofossils are in absolute counts or on a scale from
1 to 5 (i.e. peat constituents, moss parts and roots; 1 = <5%,
2 = 5–25%, 3 = 25–50%, 4 = 50–75%, and 5 = 75–100%).

Maximum size of charcoal particles is given in millimeter. Lines
and unfilled boxes show ·5 exaggeration. The lithology shows
strongly decomposed (close line spacing), decomposed, slightly
decomposed and undecomposed (broad line spacing) peat.
UOM = unidentified organic material
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Main gradient of change

The first DCA axes for the different data sets can be

considered to represent the main gradient of change.

By reducing the complex data sets into single variables

it is possible to compare the data sets directly with each

other (Fig. 6). The first DCA axis of the testate

amoebae assemblage explains 39.5% of the total vari-

ance, of the wetland pollen assemblage 56.7% (32.6%

for the top 18 cm) and of the upland pollen assemblage

20.1% (26.7% for the top 18 cm). There is a striking

similarity between the first DCA axis of upland pollen

and the curve for the same data set (84% of the sam-

ples show same direction of change, P = 0.003). NAP is

a relatively good measurement of grazing/openness

(Aaby 1994) and the good correlation suggests that the

main change in the upland pollen assemblage is related

to grazing/openness. Comparison of the first DCA axes

between the upland and wetland pollen assemblages

shows a clear negative relationship until A.D. 1985

(88% of the samples show opposite direction of

change, P = 0.008) and a positive relationship with the

testate amoebae until A.D. 1985. This suggests that the

most important variable for all the data sets until A.D.

1985 is grazing/openness. The upper parts of the first

DCA axes of the testate amoebae and of the wetland

pollen assemblages seem related, while the relation

with the upland pollen assemblage is less clear. But the

major change in the testate amoebae assemblage

around A.D. 1950 has neither a parallel in the short

wetland pollen data set nor in the long, and though it

seems that both the testate amoebae and the wetland

pollen assemblages are affected by grazing/openness it

is clear that the relationship is not linear and that the

different proxies respond in different ways. A direct

comparison with different upland pollen taxa (Figs. 5,

6) shows that the most important change in the testate

amoebae assemblage is related to a reduction in heavy

grazing indicators such as Plantago media and Plantago

montana-type. The most important change in the

Fig. 5 Percentage diagram of upland pollen types. Highland
NAP% is based on the sum of highland pollen and spores (taxa
abundant >1,000 m a.s.l. in the modern vegetation). Percentage
values are based on the sum of upland pollen and spores. Lines

show ·5 exaggeration. Among trees, only Picea, Abies, Acer and
Fagus occur locally (<ca. 5 km) today. Herb taxa are sorted on
weighted average. The dotted line is a significant zone boundary,
but is not considered relevant in the current context
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(long) wetland pollen assemblage seems primarily

related to an increase in the NAP curve. It is thus

possible that the testate amoebae assemblage here

primarily reacts to grazing pressure (local disturbance)

while the wetland pollen assemblage primarily reacts

to openness (deforestation).

Discussion

The two most important shifts in the local mire con-

ditions occurred around A.D. 1700 and A.D. 1950. Two

other major shifts occurred around A.D. 1800 and A.D.

1985. Comparison between the DCA analysis and the

upland pollen diagram suggests that the most impor-

tant changes in the data sets before A.D. 1985 are

related to openness/grazing. However this is only one

parameter and the potential causes for the main

changes in the mire conditions will be discussed more

in detail below.

Human and climatic impact on mires

Deforestation of the landscape surrounding a mire may

cause a rise in the water-table because of reduced

evapotranspiration. This connection between defores-

tation and water-table has been demonstrated by

Moore and Willmot (1976). However in a karst land-

scape, such as our study region, the mire hydrology is

not necessarily connected with the surrounding ground

water. In the nearby Val de Joux, Mitchell et al. (2001)

showed that in fact drying of the bog surface was

caused by increased exposure to wind because of

deforestation. Nevertheless for our study site the re-

sults suggest that the water-table of the mire and of the

surroundings are connected. Forestation of the mire

surface itself will in any case reduce the water-table. A

full-grown Picea, for example, transpires up to 100 l

water on a sunny day (Zweifel and Häsler 2001).

Plantation of Picea has deliberately been done in many

places to convert wetlands into more productive areas.

Grazing will keep the landscape open, but it will also

affect mires directly through trampling, which might

Table 3 Summary of results. Local water-table is inferred from testate amoebae, moss types and degree of decomposition

A.D. Water-table Peat growth rate Mire vegetation Openness Fire Climate Period

1985–2000 Decreasing Very high Cyperaceae, Potentilla, Sphagnum Open Very low Warming 8
1950–1985 Decreasing Very high Cyperaceae, Potentilla Open Low Warm 7
1925–1950 High (varying) High Cyperaceae, Potentilla Open Moderate Warming 6
1800–1925 High (varying) Moderate Cyperaceae, Potentilla Very open Moderate Cool 5
1750–1800 High (varying) Moderate Cyperaceae, Potentilla, Sphagnum Very open High Warming 4
1700–1750 High? (varying) Moderate Cyperaceae, Potentilla, Sphagnum Open Very high Cold 3
1450–1700 Low? Low Ferns, Vaccinium, Cyperaceae Half open High Cooling 2
1000–1450 Very low? Very low Ferns, Vaccinium, Cyperaceae Closed Moderate Warm 1

Peat growth rate is based on the depth-age model. Mire vegetation is derived from the dominant wetland pollen types. Openness is
inferred from the upland NAP. Fire activity is inferred from the abundance of charcoal-dust particles. Climate is according to Begert
et al. (2005), Casty et al. (2005) and Moberg et al. (2005). Periods are combinations of statistically significant assemblage zones

Fig. 6 Comparison of first DCA axes between proxies. Circles
refer to data sets of 0–18 cm depth and dots refer to data sets of
0–25 cm depth. The longest series is referred to in the text unless
otherwise stated. Numbers adjacent to the curves correspond to
the assemblage zones. The NAP curve and the period boundaries
have been added for comparison
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cause increased erosion, surface run-off and peat

compaction. This will increase the decomposition and

compaction of the top peat layers. It may also change

the water movement in the mire and bring more min-

eral-rich water to the surface.

Climate also has a strong effect on mires. Lower

evapotranspiration caused by wetter and/or cooler cli-

mate raises the water-table, thus reducing the decom-

position rate of the peat (e.g. Aaby and Tauber 1974;

Nilssen and Vorren 1991; Mauquoy et al. 2002). The

species composition will also be affected (e.g. Barber

et al. 2003). Primarily relatively undisturbed mires of

the raised bog type have been studied, but there is no

reason to expect the Amburnex mire would react dif-

ferently in this respect.

Cause and effect of changes in the Les Amburnex

mire

The shift in local vegetation around A.D. 1700 (a de-

crease in Caltha-type, Ranunculus aconitifolius-type,

ferns and Vaccinium, and an increase in Cyperaceae,

Potentilla and Sphagnum) occurred simultaneously

with a marked peak in charcoal-dust particles (A.D.

1650–1750) and an increasingly open landscape (max-

imum grazing/openness A.D. 1750–1925). It seems

therefore likely that the recorded changes in the mire

vegetation are the effect of a rise in the water-table

following major deforestation and opening of the

landscape. The surrounding slopes and the small size of

the mire probably make it sensitive to a general in-

crease in the ground water-table. Interestingly the cli-

matic cooling of the Little Ice Age ca. A.D. 1300–1850

and the increasing water levels in mid-European lakes

from ca. A.D. 1400 (Magny 2004) coincide with a de-

creased decomposition rate in the mire. Also the

change in mire vegetation in A.D. 1700 coincides with

the Maunder Minimum in solar activity (A.D. 1645–

1715; Eddy 1977), a very harsh period in the Alps

during the A.D. 1690s (Casty et al. 2005). Furthermore

it coincides with glacier advances in the Alps A.D.

1600–1900 (maxima ca. A.D. 1650 and A.D. 1850; Wan-

ner et al. 2000). The end of the 17th century was in fact

the coldest period in Europe during the last 500 years

(Luterbacher et al. 2004). Peat bogs with no or little

human impact show a major change in species com-

position (i.e. Sphagnum) both at the beginning of the

Little Ice Age (Barber et al. 2003) and during the

coldest phase A.D. 1650–1850 (Barber et al. 2000). The

major change in mire vegetation in A.D. 1700 at the

Amburnex mire can thus be explained both by defor-

estation and by climatic cooling. During the High

Middle Ages (A.D. 1000–1300) the mire vegetation

seems to have reacted in a similar way (e.g. increase in

Cyperaceae). This was also a phase of deforestation

and agricultural expansion (Williams 2000; Gauthier

2004; Sjögren 2006), but it occurred during the

favourable Medieval Warm Period. If this period is

used as an analogue for the changes in A.D. 1700 then

deforestation is the more probable cause, as there was

no equivalent to the climatic deterioration of the Little

Ice Age. Unfortunately, the High Middle Ages are not

well represented in the pollen record because of low

temporal resolution, and any analogies are therefore

weak. Still, considering the very strong human impact

in the area this is likely to have been the strongest

forcing factor. Climatic change would then work in

phase with human impact, and the two probably en-

hance the effects of each other.

The decrease in Sphagnum spores in A.D. 1800 could

imply climatic forcing as it coincides with the end of

the coldest and wettest phase of the Little Ice Age and

there is no apparent reduction in openness. An alter-

native explanation is that trampling increased and

created tussock vegetation dominated by Cyperaceae

and Potentilla, where Sphagnum growth was hampered

simply by repeated disturbance. The varying water-

table can be explained by varying wet (hollows) and

dry (tussocks) areas, but summer drought is an alter-

native explanation, which also would explain the dis-

appearance of Sphagnum.

The second most important shift in the mire condi-

tions occurred in A.D. 1950 (major changes in the tes-

tate amoebae assemblage indicating a lower water-

table and acidification, peat decomposition decrease

and Sphagnum re-appearance). This shift occurred

simultaneously with a strong peak in Cyperaceae pol-

len. Grazing pressure and openness decreased in A.D.

1925, and the reduced grazing would allow higher

pollen production as Cyperaceae were not damaged

prior to flowering (Segerström and Emanuelsson 2002).

The Cyperaceae peak could thus be interpreted as a

sign of reduced grazing on the mire, either as an effect

of a general decrease or because the mire became

fenced (as today) and thereby protected from grazing.

With reduced trampling Sphagnum could form peat in

the areas between the tussocks, resulting in the re-

corded succession of wet lawn to relatively dry hum-

mock. The modern surface is flat and consists of a

mosaic of Cyperaceae, Potentilla and Sphagnum pat-

ches (the peat profile is extracted from a Sphagnum

patch) that can be the stage following tussock vegeta-

tion. A similar succession of peat regeneration is de-

scribed by Grosvernier et al. (1995), who also stress the

importance of the microstructure for peat regenera-

tion. Another indication of this development is Nebela
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tubulata, which had its main distribution during A.D.

1950–1985. This taxon has been recorded on regener-

ating Sphagnum mires elsewhere in the Swiss Jura

Mountains and indicates a less disturbed mire surface

(EAD Mitchell, personal communication). There is a

strong warming trend starting in the late 19th century

that peaks around A.D. 1950 (Begert et al. 2005). This

could have enhanced some of the changes in the mire

conditions, e.g. the lowering of the water-table, which

have been shown in other mires (Hendon and Char-

man 2004). Still there is no clear ecological reason why

a warming trend would suddenly initiate Sphagnum

growth. Rapid changes in climate could change the

pollen productivity, but for Cyperaceae this does not

seem to be the case as the relative pollen productivity

of this taxon is negatively correlated to temperature

(Sjögren et al. 2006). Therefore, the changes in mire

conditions in A.D. 1950 were most probably caused by

reduced trampling.

Around A.D. 1985 there is a change to even drier and

more acidic conditions in the mire (Sphagnum Sect.

Acutifolia and Aulacomnium palustre appear, Assulina

seminulum and Arcella catinus increase). There are no

detectable changes in the land-use of the surrounding

landscape, and the shift in species composition must be

attributed to either natural succession or climatic

change. After rather stable values since A.D. 1950

temperatures rose sharply around A.D. 1985 (Begert

et al. 2005) and reached values unprecedented in the

last 500 years (Casty et al. 2005). Considering that a

clear relationship between mire taxa (especially

Sphagnum species) and climate has been shown (Bar-

ber et al. 1994), it is quite possible that the recorded

shift in species composition around A.D. 1985 is related

to these rising temperatures.

Conclusions

The most important factor for the local development of

the Les Amburnex mire during the last millennium was

human impact, primarily deforestation and grazing

(trampling). Climatic change played a secondary role

and first became the most important factor when hu-

man impact was relatively stable (i.e. late 20th cen-

tury). Still, climatic change probably played a role in

most major changes (especially A.D. 1700), and should

be taken into consideration even for mires strongly

affected by human activities.

Many high-altitude mires in the Jura Mountains and

the Alps show a similar peat stratigraphy as the Les

Amburnex mire (Sjögren et al. 2005) and it can be

assumed that they react in a similar way. Grazing

pressure in the high parts of the Alps has decreased

dramatically during the 20th century, and together with

rising temperatures it can be expected that the forest

limit will move considerably upward in the near future

(Hofgaard 1997; van der Knaap and van Leeuwen

2003). Grazing pressure (trampling), openness and

climate are here shown to be very important factors for

mire development, and dramatic changes in the mires

can thus be expected. Initial peat regeneration may be

an effect of reduced trampling and collapsed drainage

systems, but subsequent reforestation (which takes a

longer time) and the warmer climate may finally turn

the mires into forests.
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Schönborn W (1962) Die Ökologie der Testaceen im oligotro-
phen See, dargestellt am Beispiel des Großen Stechlinsees.
Limnologica 1:111–182

Segerström U, Emanuelsson M (2002) Extensive forest grazing,
and hay-making on mires – vegetation changes in south-
central Sweden due to land use since the Medieval Times.
Veget Hist Archaeobot 11:181–190

Shotyk W (2002) The chronology of anthropogenic, atmo-
spheric Pb deposition recorded by peat cores in three

minerogenic peat deposits from Switzerland. Sci Total
Environ 292:19–31
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