24,317 research outputs found
Oscillating chiral currents in nanotubes: a route to nanoscale magnetic test tubes
With a view to optimising the design of carbon-nanotube (CNT) windmills and
to maximising the internal magnetic field generated by chiral currents, we
present analytical results for the group velocity components of an electron
flux through chiral carbon nanotubes. Chiral currents are shown to exhibit a
rich behaviour and can even change sign and oscillate as the energy of the
electrons is increased. We find that the transverse velocity and associated
angular momentum of electrons is a maximum for non-metallic CNTs with a chiral
angle of 18. Such CNTs are therefore the optimal choice for CNT windmills
and also generate the largest internal magnetic field for a given longitudinal
current. For a longitudinal current of order amps, this field can be
of order Teslas, which is sufficient to produce interesting spintronic
effects and a significant contribution to the self inductance.Comment: 4 pages, 1 figur
Suppression of Giant Magnetoresistance by a superconducting contact
We predict that current perpendicular to the plane (CPP) giant
magnetoresistance (GMR) in a phase-coherent magnetic multilayer is suppressed
when one of the contacts is superconducting. This is a consequence of a
superconductivity-induced magneto-resistive (SMR) effect, whereby the
conductance of the ferromagnetically aligned state is drastically reduced by
superconductivity. To demonstrate this effect, we compute the GMR ratio of
clean (Cu/Co)_nCu and (Cu/Co)_nPb multilayers, described by an ab-initio spd
tight binding Hamiltonian. By analyzing a simpler model with two orbitals per
site, we also show that the suppression survives in the presence of elastic
scattering by impurities.Comment: 5 pages, 4 figures. Submitted to PR
Superconductivity-Induced Anderson Localisation
We have studied the effect of a random superconducting order parameter on the
localization of quasi-particles, by numerical finite size scaling of the
Bogoliubov-de Gennes tight-binding Hamiltonian. Anderson localization is
obtained in d=2 and a mobility edge where the states localize is observed in
d=3. The critical behavior and localization exponent are universal within error
bars both for real and complex random order parameter. Experimentally these
results imply a suppression of the electronic contribution to thermal transport
from states above the bulk energy gap.Comment: 4 pages, revtex file, 3 postscript figure
General Green's function formalism for transport calculations with spd-Hamiltonians and giant magnetoresistance in Co and Ni based magnetic multilayers
A novel, general Green's function technique for elastic spin-dependent
transport calculations is presented, which (i) scales linearly with system size
and (ii) allows straightforward application to general tight-binding
Hamiltonians (spd in the present work). The method is applied to studies of
conductance and giant magnetoresistance (GMR) of magnetic multilayers in CPP
(current perpendicular to planes) geometry in the limit of large coherence
length. The magnetic materials considered are Co and Ni, with various
non-magnetic materials from the 3d, 4d, and 5d transition metal series.
Realistic tight-binding models for them have been constructed with the use of
density functional calculations. We have identified three qualitatively
different cases which depend on whether or not the bands (densities of states)
of a non-magnetic metal (i) form an almost perfect match with one of spin
sub-bands of the magnetic metal (as in Cu/Co spin valves); (ii) have almost
pure sp character at the Fermi level (e.g. Ag); (iii) have almost pure d
character at the Fermi energy (e.g. Pd, Pt). The key parameters which give rise
to a large GMR ratio turn out to be (i) a strong spin polarization of the
magnetic metal, (ii) a large energy offset between the conduction band of the
non-magnetic metal and one of spin sub-bands of the magnetic metal, and (iii)
strong interband scattering in one of spin sub-bands of a magnetic metal. The
present results show that GMR oscillates with variation of the thickness of
either non-magnetic or magnetic layers, as observed experimentally.Comment: 22 pages, 9 figure
Forming disk galaxies in wet major mergers. I. Three fiducial examples
Using three fiducial Nbody+SPH simulations, we follow the merging of two disk
galaxies with a hot gaseous halo component each, and examine whether the merger
remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by
violent relaxation during the merging and most of their stars form a classical
bulge, while the remaining form a thick disk and its bar. A new stellar disk
forms subsequently and gradually in the remnant from the gas accreted mainly
from the halo. It is vertically thin and well extended in its equatorial plane.
A bar starts forming before the disk is fully in place, contrary to what is
assumed in idealised simulations of isolated bar-forming galaxies. It has
morphological features such as ansae and boxy/peanut bulges. Stars of different
ages populate different parts of the box/peanut. A disky pseudobulge forms
also, so that by the end of the simulation, all three types of bulges coexist.
The oldest stars are found in the classical bulge, followed by those of the
thick disk, then by those in the thin disk. The youngest stars are in the
spiral arms and the disky pseudobulge. The disk surface density profiles are of
type II (exponential with downbending), and the circular velocity curves are
flat and show that the disks are submaximum in these examples: two clearly so
and one near-borderline between maximum and submaximum. On average, only
roughly between 10 and 20% of the stellar mass is in the classical bulge of the
final models, i.e. much less than in previous simulations.Comment: 17 pages, 8 figures, accepted for publication in ApJ. V2: replaced
Figure 4 with correct versio
- …