298 research outputs found

    Enhanced time response of 1-in. LaBr3(Ce) crystals by leading edge and constant fraction techniques

    Get PDF
    We have characterized in depth the time response of three detectors equipped with cylindrical LaBr3_{3} (Ce) crystals with dimensions of 1-in. in height and 1-in. in diameter, and having nominal Ce doping concentration of 5%, 8% and 10%. Measurements were performed at 60^{60}Co and 22^{22}Na {\gamma}-ray energies against a fast BaF2_{2} reference detector. The time resolution was optimized by the choice of the photomultiplier bias voltage and the fine tuning of the parameters of the constant fraction discriminator, namely the zero-crossing and the external delay. We report here on the optimal time resolution of the three crystals. It is observed that timing properties are influenced by the amount of Ce doping and the crystal homogeneity. For the crystal with 8% of Ce doping the use of the ORTEC 935 CFD at very shorts delays in addition to the Hamamatsu R9779 PMT has made it possible to improve the LaBr3_{3}(Ce) time resolution from the best literature value at 60Co photon energies to below 100 ps.Comment: Article submitted to Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipmen

    Ground-gamma band mixing and evolution of collectivity in even-even neutron-rich nuclei with 40<Z<50

    Full text link
    We propose an extended band mixing formalism capable of describing the ground-gamma band interaction in a wide range of collective spectra beyond the regions of well deformed nuclei. On this basis we explain the staggering effects observed in the gamma bands of Mo, Ru and Pd nuclei providing a consistent interpretation of new experimental data in the neutron rich region. As a result the systematic behavior of the odd-even staggering effect and some general characteristics of the spectrum such as the mutual disposition of the bands, the interaction strength and the band structures is explained as the manifestation of respective changes in collective dynamics of the system.Comment: 17 pages, 6 figures, 4 table

    Evolution of shell structure in neutron-rich calcium isotopes

    Full text link
    We employ interactions from chiral effective field theory and compute the binding energies and low-lying excitations of calcium isotopes with the coupled-cluster method. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions, and the coupling to the particle continuum is taken into account using a Berggren basis. The computed ground-state energies and the low-lying 2+ states for the isotopes 42,48,50,52Ca are in good agreement with data, and we predict the excitation energy of the first 2+ state in 54Ca at 1.9 MeV, displaying only a weak sub-shell closure. In the odd-mass nuclei 53,55,61Ca we find that the positive parity states deviate strongly from the naive shell model.Comment: 5 pages, 4 figures; small correction of effective 3NF and slight change of the corresponding parameters; updated figures and tables; main results and conclusions unchange

    Co-existing structures in 105Ru

    Full text link
    New positive-parity states, having a band-like structure, were observed in 105Ru. The nucleus was produced in induced fission reaction and the prompt gamma-rays, emitted from the fragments, were detected by the EUROBALL III multi-detector array. The partial scheme of excited 105Ru levels is analyzed within the Triaxial-Rotor-plus-Particle approach

    In-beam fast-timing measurements in 103,105,107Cd

    Full text link
    Fast-timing measurements were performed recently in the region of the medium-mass 103,105,107Cd isotopes, produced in fusion evaporation reactions. Emitted gamma-rays were detected by eight HPGe and five LaBr3:Ce detectors working in coincidence. Results on new and re-evaluated half-lives are discussed within a systematic of transition rates. The 7/21+7/2_1^+ states in 103,105,107Cd are interpreted as arising from a single-particle excitation. The half-life analysis of the 11/2111/2_1^- states in 103,105,107Cd shows no change in the single-particle transition strength as a function of the neutron number

    Fast-timing measurements in the ground-state band of 114Pd

    Get PDF
    Using a hybrid Gammasphere array coupled to 25 LaBr3(Ce) detectors, the lifetimes of the first three levels of the yrast band in 114Pd, populated via 252Cf decay, have been measured. The measured lifetimes are τ2+ = 103(10) ps, τ4+ = 22(13) ps, and τ6+ 10 ps for the 2+ 1 , 4+ 1 , and 6+ 1 levels, respectively. Palladium-114 was predicted to be the most deformed isotope of its isotopic chain, and spectroscopic studies have suggested it might also be a candidate nucleus for low-spin stable triaxiality. From the lifetimes measured in this work, reduced transition probabilities B(E2; J → J − 2) are calculated and compared with interacting boson model, projected shell model, and collective model calculations from the literature. The experimental ratio RB(E2) = B(E2; 4+ 1 → 2+ 1 )/B(E2; 2+ 1 → 0+ 1 ) = 0.80(42) is measured for the first time in 114Pd and compared with the known values RB(E2) in the palladium isotopic chain: the systematics suggest that, for N = 68, a transition from γ -unstable to a more rigid γ -deformed nuclear shape occurs.This work was financially supported by the Science and Technology Facility Council (STFC) Grants No. ST/L005840/1, No. ST/L005743/1, and No. ST/G000751/1. This work has also been partially supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 (ANL). E.R.G. would like to acknowledge the STFC for funding via his Ph.D. studentship. D.J.H. acknowledges the National Science Foundation, Grant No. PHY-1502092. E.A.S. and O.Y. would like to acknowledge the project DFNI-E02/6

    Configuration dependence of K

    Full text link

    Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag

    Get PDF
    Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe beam and the relativistic fission of 238U. The fragments were mass analyzed with the GSI Fragment separator and subsequently implanted into a passive stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight isomeric states were observed in 122-126Ag nuclei. The level schemes of 122,123,125Ag were revised and extended with isomeric transitions being observed for the first time. The excited states in the odd-mass silver isotopes are interpreted as core-coupled states. The isomeric states in the even-mass silver isotopes are discussed in the framework of the proton-neutron split multiplets. The results of shell-model calculations, performed for the most neutron-rich silver nuclei are compared to the experimental data

    M3 and E4 K-forbidden decays of the Kπ=23/2- isomer in 177Lu

    Get PDF
    Decay of the long-lived (T1/2=160.44 d) Kπ=23/2- isomer in 177Lu was investigated using a chemically purified source and the Gammasphere array. New, high-multipolarity M3 and E4 deexcitation branches to the known Iπ=17/2- and 15/2- members of the π9/2-[514] band were discovered. The reduced hindrance factors per degree of K forbiddenness deduced for these two transitions are found to be relatively large when compared to similar decays from the Kπ=37/2- (T1/2=51.4 min) and Kπ=16+ (T1/2=31 yr) isomers in 177Hf and 178Hf, respectively. This is attributed to significant configuration changes that occur in the decay of this 177Lu isomer
    corecore