12 research outputs found

    Trained sensitization and tolerance development in microglial cells: role of phosphoinositide 3-kinase γ

    Get PDF
    Neuere Untersuchungen des letzten Jahrzehnts zeigten, dass Immunzellen der angeborenen Immunabwehr in der Lage sind, Gedächtnis-ähnliche (adaptive) Reaktionen, d.h. trainierte Sensibilisierung bzw. Toleranz, auszuprägen, nachdem sie mit denselben oder verschiedenen Stressoren (PAMPs) mehrfach konfrontiert wurden. Diese Wirkungen werden durch epigenetische Modifikationen und resultierende metabolische Veränderungen verursacht, die mit der Induktion von Entzündungsreaktionen der Zellen einhergehen und dabei verschiedene zelluläre Prozesse der angeborenen Immunität beeinflussen. Das Ziel dieser Studie war es zu untersuchen, ob eine dosisabhängige Induktion von trainierten Sensibilisierung und Toleranz durch unterschiedliche pathogene Stressoren (LPS, β-Glucan) bei Mikrogliazellen nachzuweisen ist. Darüber hinaus stellten wir die Hypothese auf, dass PI3Kγ verschiedene metabolische Veränderungen reguliert, die für die Entwicklung adaptiver Antworten von Mikrogliazellen auf repetitive Stressorkontakte von entscheidender Bedeutung sind und dadurch Modifikationen adaptiver Immunantworten, wie Phagozytose-Muster beeinflussen

    PI3Kγ Mediates Microglial Proliferation and Cell Viability via ROS

    Get PDF
    (1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation

    Memory-Like Inflammatory Responses of Microglia to Rising Doses of LPS: Key Role of PI3Kγ

    Get PDF
    Trained immunity and immune tolerance have been identified as long-term response patterns of the innate immune system. The causes of these opposing reactions remain elusive. Here, we report about differential inflammatory responses of microglial cells derived from neonatal mouse brain to increasing doses of the endotoxin LPS. Prolonged priming with ultra-low LPS doses provokes trained immunity, i.e., increased production of pro-inflammatory mediators in comparison to the unprimed control. In contrast, priming with high doses of LPS induces immune tolerance, implying decreased production of inflammatory mediators and pronounced release of anti-inflammatory cytokines. Investigation of the signaling processes and cell functions involved in these memory-like immune responses reveals the essential role of phosphoinositide 3-kinase γ (PI3Kγ), one of the phosphoinositide 3-kinase species highly expressed in innate immune cells. Together, our data suggest profound influence of preceding contacts with pathogens on the immune response of microglia. The impact of these interactions—trained immunity or immune tolerance—appears to be shaped by pathogen dose

    Memory-Like Responses of Brain Microglia Are Controlled by Developmental State and Pathogen Dose

    Get PDF
    Microglia, the innate immune cells of the central nervous system, feature adaptive immune memory with implications for brain homeostasis and pathologies. However, factors involved in the emergence and regulation of these opposing responses in microglia have not been fully addressed. Recently, we showed that microglia from the newborn brain display features of trained immunity and immune tolerance after repeated contact with pathogens in a dose-dependent manner. Here, we evaluate the impact of developmental stage on adaptive immune responses of brain microglia after repeated challenge with ultra-low (1 fg/ml) and high (100 ng/ml) doses of the endotoxin LPS in vitro. We find that priming of naïve microglia derived from newborn but not mature and aged murine brain with ultra-low LPS significantly increased levels of pro-inflammatory mediators TNF-α, IL-6, IL-1β, MMP-9, and iNOS as well as neurotrophic factors indicating induction of trained immunity (p \u3c 0.05). In contrast, stimulation with high doses of LPS led to a robust downregulation of pro-inflammatory cytokines and iNOS independent of the developmental state, indicating induced immune tolerance. Furthermore, high-dose priming with LPS upregulated anti-inflammatory mediators IL-10, Arg-1, TGF- β, MSR1, and IL-4 in newborn microglia (p \u3c 0.05). Our data indicate pronounced plasticity of the immune response of neonate microglia compared with microglia derived from mature and aged mouse brain. Induced trained immunity after priming with ultra-low LPS doses may be responsible for enhanced neuro-inflammatory susceptibility of immature brain. In contrast, the immunosuppressed phenotype following high-dose LPS priming might be prone to attenuate excessive damage after recurrent systemic inflammation

    The Role of the Pathogen Dose and PI3Kγ in Immunometabolic Reprogramming of Microglia for Innate Immune Memory

    Get PDF
    Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it

    LPS Induces Opposing Memory-like Inflammatory Responses in Mouse Bone Marrow Neutrophils

    No full text
    A growing body of evidence suggests that innate immune cells can respond in a memory-like (adaptive) fashion, which is referred to as trained immunity. Only few in vivo studies have shown training effects in neutrophils; however, no in vitro setup has been established to study the induction of trained immunity or tolerance in neutrophils by microbial agents. In light of their short lifespan (up to 48 h), we suggest to use the term trained sensitivity for neutrophils in an in vitro setting. Here, we firstly describe a feasible two-hit model, using different doses of lipopolysaccharide (LPS) in bone marrow neutrophils. We found that low doses (10 pg/mL) induce pro-inflammatory activation (trained sensitivity), whereas priming with high doses (100 ng/mL) leads to suppression of pro-inflammatory mediators such as TNF-α or IL-6 (tolerance) (p < 0.05). On a functional level, trained neutrophils displayed increased phagocytic activity and LFA-1 expression as well as migrational capacity and CD11a expression, whereas tolerant neutrophils show contrasting effects in vitro. Mechanistically, TLR4/MyD88/PI3Ks regulate the activation of p65, which controls memory-like responses in mouse bone marrow neutrophils (p < 0.05). Our results open a new window for further in vitro studies on memory-like inflammatory responses of short-lived innate immune cells such as neutrophils

    Training vs. Tolerance: The Yin/Yang of the Innate Immune System

    No full text
    For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections—tolerance, or contribute to the progression of the inflammatory disorder—trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies

    Gut Microbiota-Derived Small Extracellular Vesicles Endorse Memory-like Inflammatory Responses in Murine Neutrophils

    No full text
    Neutrophils are classically characterized as merely reactive innate effector cells. However, the microbiome is known to shape the education and maturation process of neutrophils, improving their function and immune-plasticity. Recent reports demonstrate that murine neutrophils possess the ability to exert adaptive responses after exposure to bacterial components such as LPS (Gram-negative bacteria) or LTA (Gram-positive bacteria). We now ask whether small extracellular vesicles (EVs) from the gut may directly mediate adaptive responses in neutrophils in vitro. Murine bone marrow-derived neutrophils were primed in vitro by small EVs of high purity collected from colon stool samples, followed by a second hit with LPS. We found that low-dose priming with gut microbiota-derived small EVs enhanced pro-inflammatory sensitivity as indicated by elevated levels of TNF-α, IL-6, ROS and MCP-1 and increased migratory and phagocytic activity. In contrast, high-dose priming resulted in a tolerant phenotype, marked by increased IL-10 and decreased transmigration and phagocytosis. Alterations in TLR2/MyD88 as well as TLR4/MyD88 signaling were correlated with the induction of adaptive cues in neutrophils in vitro. Taken together, our study shows that small EVs from stools can drive adaptive responses in neutrophils in vitro and may represent a missing link in the gut–immune axis

    Impact of ambient temperature on inflammation-induced encephalopathy in endotoxemic mice—role of phosphoinositide 3-kinase gamma

    Get PDF
    Background Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. Methods Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 μg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)—evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood–brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm–Sidak test or t tests with Bonferroni’s correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn’s multiple comparisons test. Results We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood–brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. Conclusions Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood–brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored
    corecore