4,742 research outputs found

    Determination of the Equation of State of Dense Matter

    Full text link
    Nuclear collisions can compress nuclear matter to densities achieved within neutron stars and within core-collapse supernovae. These dense states of matter exist momentarily before expanding. We analyzed the flow of matter to extract pressures in excess of 10^34 pascals, the highest recorded under laboratory-controlled conditions. Using these analyses, we rule out strongly repulsive nuclear equations of state from relativistic mean field theory and weakly repulsive equations of state with phase transitions at densities less than three times that of stable nuclei, but not equations of state softened at higher densities because of a transformation to quark matter.Comment: 26 pages, 6 figures; final versio

    Conceptual design study of a Harrier V/STOL research aircraft

    Get PDF
    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed

    Triggering the Formation of Halo Globular Clusters with Galaxy Outflows

    Full text link
    We investigate the interactions of high-redshift galaxy outflows with low-mass virialized (Tvir < 10,000K) clouds of primordial composition. While atomic cooling allows star formation in larger primordial objects, such "minihalos" are generally unable to form stars by themselves. However, the large population of high-redshift starburst galaxies may have induced widespread star formation in these objects, via shocks that caused intense cooling both through nonequilibrium H2 formation and metal-line emission. Using a simple analytic model, we show that the resulting star clusters naturally reproduce three key features of the observed population of halo globular clusters (GCs). First, the 10,000 K maximum virial temperature corresponds to the ~ 10^6 solar mass upper limit on the stellar mass of GCs. Secondly, the momentum imparted in such interactions is sufficient to strip the gas from its associated dark matter halo, explaining why GCs do not reside in dark matter potential wells. Finally, the mixing of ejected metals into the primordial gas is able to explain the ~ 0.1 dex homogeneity of stellar metallicities within a given GC, while at the same time allowing for a large spread in metallicity between different clusters. To study this possibility in detail, we use a simple 1D numerical model of turbulence transport to simulate mixing in cloud-outflow interactions. We find that as the shock shears across the side of the cloud, Kelvin-Helmholtz instabilities arise, which cause mixing of enriched material into > 20% of the cloud. Such estimates ignore the likely presence of large-scale vortices, however, which would further enhance turbulence generation. Thus quantitative mixing predictions must await more detailed numerical studies.Comment: 21 pages, 11 figures, Apj in pres

    The Most Massive Black Holes in the Universe: Effects of Mergers in Massive Galaxy Clusters

    Get PDF
    Recent observations support the idea that nuclear black holes grew by gas accretion while shining as luminous quasars at high redshift, and they establish a relation of the black hole mass with the host galaxy's spheroidal stellar system. We develop an analytic model to calculate the expected impact of mergers on the masses of black holes in massive clusters of galaxies. We use the extended Press-Schechter formalism to generate Monte Carlo merger histories of halos with a mass 10^{15} h^{-1} Msun. We assume that the black hole mass function at z=2 is similar to that inferred from observations at z=0 (since quasar activity declines markedly at z<2), and we assign black holes to the progenitor halos assuming a monotonic relation between halo mass and black hole mass. We follow the dynamical evolution of subhalos within larger halos, allowing for tidal stripping, the loss of orbital energy by dynamical friction, and random orbital perturbations in gravitational encounters with subhalos, and we assume that mergers of subhalos are followed by mergers of their central black holes. Our analytic model reproduces numerical estimates of the subhalo mass function. We find that the most massive black holes in massive clusters typically grow by a factor ~ 2 by mergers after gas accretion has stopped. In our ten realizations of 10^{15} h^{-1} Msun clusters, the highest initial (z=2) black hole masses are 5-7 x 10^9 Msun, but four of the clusters contain black holes in the range 1-1.5 x 10^{10} Msun at z=0. Satellite galaxies may host black holes whose mass is comparable to, or even greater than, that of the central galaxy. Thus, black hole mergers can significantly extend the very high end of the black hole mass function.Comment: 13 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Universal scaling of the elliptic flow data at RHIC

    Get PDF
    Recent PHOBOS measurements of the excitation function for the pseudo-rapidity dependence of elliptic flow in Au+Au collisions at RHIC, have posed a significant theoretical challenge. Here we show that these differential measurements, as well as the RHIC measurements on transverse momentum satisfy a universal scaling relation predicted by the Buda-Lund model, based on exact solutions of perfect fluid hydrodynamics. We also show that recently found transverse kinetic energy scaling of the elliptic flow is a special case of this universal scaling.Comment: 4 pages, 3 figures, 1 tabl

    Semi-Analytical Models for Lensing by Dark Halos: I. Splitting Angles

    Get PDF
    We use the semi-analytical approach to analyze gravitational lensing of quasars by dark halos in various cold dark matter (CDM) cosmologies, in order to determine the sensitivity of the prediction probabilities of images separations to the input assumptions regarding halos and cosmologies. The mass function of dark halos is assumed to be given by the Press-Schechter function. The mass density profile of dark halos is alternatively taken to be the singular isothermal sphere (SIS), the Navarro-Frenk-White (NFW) profile, or the generalized NFW profile. The cosmologies include: the Einstein-de Sitter model (SCDM), the open model (OCDM), and the flat \Lambda-model (LCDM). As expected, we find that the lensing probability is extremely sensitive to the mass density profile of dark halos, and somewhat less so to the mean mass density in the universe, and the amplitude of primordial fluctuations. NFW halos are very much less effective in producing multiple images than SIS halos. However, none of these models can completely explain the current observations: the SIS models predict too many large splitting lenses, while the NFW models predict too few small splitting lenses. This indicates that there must be at least two populations of halos in the universe. A combination of SIS and NFW halos can reasonably reproduce the current observations if we choose the mass for the transition from SIS to NFW to be ~ 10^{13} solar masses. Additionally, there is a tendency for CDM models to have too much power on small scales, i.e. too much mass concentration; and it appears that the cures proposed for other apparent difficulties of CDM would help here as well, an example being the warm dark matter (WDM) variant which is shown to produce large splitting lenses fewer than the corresponding CDM model by one order of magnitude.Comment: 46 pages, including 13 figures. Revised version with significant improvemen

    Optimal Constraints on Local Primordial Non-Gaussianity from the Two-Point Statistics of Large-Scale Structure

    Full text link
    One of the main signatures of primordial non-Gaussianity of the local type is a scale-dependent correction to the bias of large-scale structure tracers such as galaxies or clusters, whose amplitude depends on the bias of the tracers itself. The dominant source of noise in the power spectrum of the tracers is caused by sampling variance on large scales (where the non-Gaussian signal is strongest) and shot noise arising from their discrete nature. Recent work has argued that one can avoid sampling variance by comparing multiple tracers of different bias, and suppress shot noise by optimally weighting halos of different mass. Here we combine these ideas and investigate how well the signatures of non-Gaussian fluctuations in the primordial potential can be extracted from the two-point correlations of halos and dark matter. On the basis of large NN-body simulations with local non-Gaussian initial conditions and their halo catalogs we perform a Fisher matrix analysis of the two-point statistics. Compared to the standard analysis, optimal weighting- and multiple-tracer techniques applied to halos can yield up to one order of magnitude improvements in \fnl-constraints, even if the underlying dark matter density field is not known. We compare our numerical results to the halo model and find satisfactory agreement. Forecasting the optimal \fnl-constraints that can be achieved with our methods when applied to existing and future survey data, we find that a survey of 50h1Gpc350h^{-1}\mathrm{Gpc}^3 volume resolving all halos down to 10^{11}\hMsun at z=1z=1 will be able to obtain \sigma_{\fnl}\sim1 (68% cl), a factor of 20\sim20 improvement over the current limits. Decreasing the minimum mass of resolved halos, increasing the survey volume or obtaining the dark matter maps can further improve these limits, potentially reaching the level of \sigma_{\fnl}\sim0.1. (abridged)Comment: V1: 23 pages, 12 figures, submitted to PRD. V2: 24 pages, added appendix and citations, matched to PRD published versio

    Determination of 2-methoxy-3-alkylpyrazines in wine by gas chromatography/mass spectrometry

    Get PDF
    2-Methoxy-3-alkylpyrazines have been isolated for the first time from a Sauvignon blanc wine by using a combination of distillation or headspace sampling and trapping by an ion-exchange resin. 2-Methoxy-3-isobutylpyrazine has been identified by gas chromatography/mass spectrometry as the major methoxypyrazine in a New Zealand Sauvignon blanc and, with the aid of 2-methoxy-d3-3-isobutylpyrazine as internal standard, its concentration has been determined as 35 ± 2 ppt. The method can be applied to small wine samples (&lt; 60 ml) and detection limits are below the olfactory thresholds

    Gravitational Lensing by Galaxy Groups in the Hubble Deep Field

    Full text link
    We investigate strong lensing of galaxies in the Hubble Deep Field by foreground groups and clusters of galaxies with masses from 101310^{13} to 10^{15} \MSun. Over this mass range, groups with the profile of Navarro, Frenk, & White (1995) are less efficient than singular isothermal spheres at producing multiple images of galaxies, by factors of 5×1025 \times 10^{- 2} to 10310^{- 3}. This difference highlights the sensitivity of the lensing cross section to the central density profile. Nonetheless, with either profile we find that the expected number of galaxies lensed by groups in the Hubble Deep Field is at most 1\lesssim 1, consistent with the lack of clearly identified group lens systems.Comment: 33 pages, 12 EPS figures, accepted by Ap
    corecore