8,609 research outputs found

    Hexapole magnet field analysis

    Get PDF
    Method rotates magnet about a wire loop of rectangular shape placed inside the pole tips and measures induced loop voltage with a wave analyzer. Quantitative field characteristics are determined from voltage induced at various harmonics of the rotation frequency

    Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs

    Full text link
    Heavy-ion collisions create deformed quark-gluon plasma (QGP) fireballs which explode anisotropically. The viscosity of the fireball matter determines its ability to convert the initial spatial deformation into momentum anisotropies that can be measured in the final hadron spectra. A quantitatively precise empirical extraction of the QGP viscosity thus requires a good understanding of the initial fireball deformation. This deformation fluctuates from event to event, and so does the finally observed momentum anisotropy. We present a harmonic decomposition of the initial fluctuations in shape and orientation of the fireball and perform event-by-event ideal fluid dynamical simulations to extract the resulting fluctuations in the magnitude and direction of the corresponding harmonic components of the final anisotropic flow at midrapidity. The final harmonic flow coefficients are found to depend non-linearly on the initial harmonic eccentricity coefficients. We show that, on average, initial density fluctuations suppress the buildup of elliptic flow relative to what one obtains from a smooth initial profile of the same eccentricity, and discuss implications for the phenomenological extraction of the QGP shear viscosity from experimental elliptic flow data.Comment: 22 pages, 17 figures. Relative to [v2], minor changes in text. Fig. 9 redrawn. This version accepted by Phys. Rev.

    Azimuth quadrupole component spectra on transverse rapidity yt{\bf y_t} for identified hadrons from Au-Au collisions at sNN=\sqrt{s_{NN}} = 200 GeV

    Full text link
    I present the first isolation of azimuth quadrupole components from published v2(pt)v_2(p_t) data (called elliptic flow) as spectra on transverse rapidity yty_t for identified pions, kaons and lambdas/protons from minimum-bias Au-Au collisions at 200 GeV. The form of the spectra on yty_t indicates that the three hadron species are emitted from a common boosted source with boost Δyt00.6\Delta y_{t0} \sim 0.6. The quadrupole spectra have a L\'evy form similar to the soft component of the single-particle spectrum, but with significantly reduced (0.7×\sim 0.7\times) slope parameters TT. Comparison of quadrupole spectra with single-particle spectra suggests that the quadrupole component comprises a small fraction (<5< 5%) of the total hadron yield, contradicting the hydrodynamic picture of a thermalized, flowing bulk medium. The form of v2(pt)v_2(p_t) is, within a constant factor, the product of ptp'_t (ptp_t in the boost frame) times the ratio of quadrupole spectrum to single-particle spectrum. That ratio in turn implies that above 0.5 GeV/c the form of v2(pt)v_2(p_t) is dominated by the hard component of the single-particle spectrum (interpreted as due to minijets). It is therefore unlikely that so-called {\em constituent-quark scaling} attributed to v2v_2 is relevant to soft hadron production mechanisms (e.g., chemical freezeout).Comment: 22 pages, 17 figure

    Development of anion-selective membranes

    Get PDF
    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81

    Determination of the Equation of State of Dense Matter

    Full text link
    Nuclear collisions can compress nuclear matter to densities achieved within neutron stars and within core-collapse supernovae. These dense states of matter exist momentarily before expanding. We analyzed the flow of matter to extract pressures in excess of 10^34 pascals, the highest recorded under laboratory-controlled conditions. Using these analyses, we rule out strongly repulsive nuclear equations of state from relativistic mean field theory and weakly repulsive equations of state with phase transitions at densities less than three times that of stable nuclei, but not equations of state softened at higher densities because of a transformation to quark matter.Comment: 26 pages, 6 figures; final versio

    Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions

    Get PDF
    We perform viscous hydrodynamic calculations in 2+1 dimensions to investigate the influence of bulk viscosity on the viscous suppression of elliptic flow in non-central heavy-ion collisions at RHIC energies. Bulk and shear viscous effects on the evolution of radial and elliptic flow are studied with different model assumptions for the transport coefficients. We find that the temperature dependence of the relaxation time for the bulk viscous pressure, especially its critical slowing down near the quark-hadron phase transition at T_c, partially offsets effects from the strong growth of the bulk viscosity itself near T_c, and that even small values of the specific shear viscosity eta/s of the fireball matter can be extracted without large uncertainties from poorly controlled bulk viscous effects.Comment: 13 pages, 7 figures, 1 table. Submitted to Physical Review C. v2: corrected typos in several entries in Table

    Toward an Improved Analytical Description of Lagrangian Bias

    Full text link
    We carry out a detailed numerical investigation of the spatial correlation function of the initial positions of cosmological dark matter halos. In this Lagrangian coordinate system, which is especially useful for analytic studies of cosmological feedback, we are able to construct cross-correlation functions of objects with varying masses and formation redshifts and compare them with a variety of analytical approaches. For the case in which both formation redshifts are equal, we find good agreement between our numerical results and the bivariate model of Scannapieco & Barkana (2002; SB02) at all masses, redshifts, and separations, while the model of Porciani et al. (1998) does well for all parameters except for objects with different masses at small separations. We find that the standard mapping between Lagrangian and Eulerian bias performs well for rare objects at all separations, but fails if the objects are highly-nonlinear (low-sigma) peaks. In the Lagrangian case in which the formation redshifts differ, the SB02 model does well for all separations and combinations of masses, apart from a discrepancy at small separations in situations in which the smaller object is formed earlier and the difference between redshifts or masses is large. As this same limitation arises in the standard approach to the single-point progenitor distribution developed by Lacey & Cole (1993), we conclude that a more complete understanding of the progenitor distribution is the most important outstanding issue in the analytic modeling of Lagrangian bias.Comment: 22 pages, 8 figures, ApJ, in pres

    Mass of Clusters in Simulations

    Get PDF
    We show that dark matter haloes, in n--body simulations, have a boundary layer (BL) with precise features. In particular, it encloses all dynamically stable mass while, outside it, dynamical stability is lost soon. Particles can pass through such BL, which however acts as a confinement barrier for dynamical properties. BL is set by evaluating kinetic and potential energies (T(r) and W(r)) and calculating R=-2T/W. Then, on BL, R has a minimum which closely approaches a maximum of w= -dlog W/dlog r. Such RwRw ``requirement'' is consistent with virial equilibrium, but implies further regularities. We test the presence of a BL around haloes in spatially flat CDM simulations, with or without cosmological constant. We find that the mass M_c, enclosed within the radius r_c, where the RwRw requirement is fulfilled, closely approaches the mass M_{dyn}, evaluated from the velocities of all particles within r_c, according to the virial theorem. Using r_c we can then determine an individual density contrast Delta_c for each virialized halo, which can be compared with the "virial" density contrast Δv 178Ωm0.45\Delta_v ~178 \Omega_m^{0.45} (Omega_m: matter density parameter) obtained assuming a spherically symmetric and unperturbed fluctuation growth. The spread in Delta_c is wide, and cannot be neglected when global physical quantities related to the clusters are calculated, while the average Delta_c is ~25 % smaller than the corresponding Delta_v; moreover if MdynM_{dyn} is defined from the radius linked to Delta_v, we have a much worse fit with particle mass then starting from {\it Rw} requirement.Comment: 4 pages, 5 figures, contribution to the XXXVIIth Rencontres de Moriond, The Cosmological Model, Les Arc March 16-23 2002, to appear in the proceeding
    corecore