29 research outputs found

    Status of Southeast Asia's marine sharks and rays

    Get PDF
    In Southeast Asia elasmobranchs are particularly threatened. We synthesized knowledge from the peer-reviewed and gray literature on elasmobranchs in the region, including their fisheries, status, trade, biology, and management. Our assessment included x species of sharkes and y species of rays. We found that 59% of assessed species are threatened with extinction and 72.5% are in decline; rays were more threatened than sharks. Research and conservation is complicated by the socioeconomic contexts of the countries, geopolitical issues in the South China Sea, and the overcapacity and multispecies nature of fisheries that incidentally capture elasmobranchs. The general paucity of data, funds, personnel, and enforcement hinders management. Reduced capacity in the general fishery sector and marine protected areas of sufficient size (for elasmobranchs and local enforcement capabilities) are among recommendations to strengthen conservation

    Feeding the world\u27s largest fish: highly variable whale shark residency patterns at a provisioning site in the Philippines

    Full text link
    Provisioning wildlife for tourism is a controversial yet widespread practice. We analysed the residency patterns of juvenile whale sharks (Rhincodon typus) in Oslob, Philippines, where provisioning has facilitated a large shark-watching operation since 2011. We identified 208 individual sharks over three years, with an average of 18.6 (s.d. = 7.8, range = 6–43) individuals sighted per week. Weekly shark abundance varied seasonally and peak-season abundance (approx. May–November) increased across years. Whale sharks displayed diverse individual site visitation patterns ranging from a single visit to sporadic visits, seasonal residency and year-round residency. Nine individuals became year-round residents, which represents a clear response to provisioning. The timing of the seasonal peak at Oslob did not align with known non-provisioned seasonal aggregations elsewhere in the Philippines, which could suggest that seasonal residents at Oslob exploit this food source when prey availability at alternative sites is low. Since prolonged residency equates to less time foraging naturally, provisioning could influence foraging success, alter distributions and lead to dependency in later life stages. Such impacts must be carefully weighed against the benefits of provisioning (i.e. tourism revenue in a remote community) to facilitate informed management decisions

    Getting the most out of citizen science for endangered species such as whale shark

    Get PDF
    Citizen science by which the general public is enlisted to participate in data collection programmes, can shed light on the biology and ecology of enigmatic species. The whale shark Rhincodon typus, the world’s largest fish, is listed as Endangered in the IUCN Red List of Threatened Species due to continued population declines, particularly in the Indo-Pacific region. The species is highly mobile, capable of crossing international boundaries, yet the species’ movements in Southeast Asia remain poorly understood. Citizen science has been used broadly in the region and beyond, to understand the species’ biology and ecology. Here, we report the first international movement of a whale shark between the Philippines and Malaysia as determined through photo-ID and citizen science. A juvenile female whale shark, P-1159, was first identified in Oslob, Cebu, Philippines in December 2017 by ongoing research at the site, and resighted in Pulau Sipadan, Sabah, Malaysia, in October 2019 by a citizen scientist. Pulau Sipadan is one of Southeast Asia’s most popular diving destinations, yet whale shark sightings are uncommon. Citizen scientists ready to collect and share data with ongoing research plays a key role in monitoring enigmatic species. Protocols should be developed to systematically collect unique sightings and behaviours accessible to divers as citizen scientists that would otherwise be lost to science

    Life History, Growth, and Reproductive Biology of Four Mobulid Species in the Bohol Sea, Philippines

    Get PDF
    In light of the global decline of mobulid populations and the necessity for sustainable fisheries management, baseline data for population dynamics were collected from a targeted fishery in the Bohol Sea, Philippines. This study focused on life-history parameters and reproductive cycles of four mobulid rays (Mobula thurstoni, Mobula japanica, Mobula tarapacana, and Manta birostris), and re-estimated their intrinsic population growth rates. Size and reproductive data were collected from 1,509 specimens (30% of catch) landed in two fishing seasons in 2015 and 2016. Size-at-birth was reviewed, and analysis of the embryos and follicles did not show any clear seasonality in the reproductive cycle, but supported an interbreeding interval. Females of all species matured at a larger size than males, and exhibited a larger size-at-pregnancy than -at-maturity. This delay in reproduction resulted in population growth rates lower than the actual rmax when based on size-at-pregnancy (rmat = rmax = 0.016–0.055 year−1 and rpreg = 0.008–0.044 year−1), and a population doubling time of 15.8–86.6 years. This study suggests that population growth rates previously reported were overestimated. In light of the Convention on International Trades of Endangered Species (CITES) and Convention on Migratory Species (CMS) assessments, while fisheries management should reflect the delayed maturation of these species and the slower population growth potential, at the current status of these population, the sustainability of any exploitation level seems unrealistic and strongly discouraged

    Satellite tracking of juvenile whale sharks in the Sulu and Bohol Seas, Philippines

    Get PDF
    The whale shark Rhincodon typus was uplisted to ‘Endangered’ in the 2016 IUCN Red List due to >50% population decline, largely caused by continued exploitation in the Indo-Pacific. Though the Philippines protected the whale shark in 1998, concerns remain due to continued take in regional waters. In light of this, understanding the movements of whale sharks in the Philippines, one of the most important hotspots for the species, is vital. We tagged 17 juvenile whale sharks with towed SPOT5 tags from three general areas in the Sulu and Bohol Seas: Panaon Island in Southern Leyte, northern Mindanao, and Tubbataha Reefs Natural Park (TRNP). The sharks all remained in Philippine waters for the duration of tracking (6–126 days, mean 64). Individuals travelled 86–2,580 km (mean 887 km) at a mean horizontal speed of 15.5 ± 13.0 SD km day−1. Whale sharks tagged in Panaon Island and Mindanao remained close to shore but still spent significant time off the shelf (>200 m). Sharks tagged at TRNP spent most of their time offshore in the Sulu Sea. Three of twelve whale sharks tagged in the Bohol Sea moved through to the Sulu Sea, whilst two others moved east through the Surigao Strait to the eastern coast of Leyte. One individual tagged at TRNP moved to northern Palawan, and subsequently to the eastern coast of Mindanao in the Pacific Ocean. Based on inferred relationships with temperature histograms, whale sharks performed most deep dives (>200 m) during the night, in contrast to results from whale sharks elsewhere. While all sharks stayed in national waters, our results highlight the high mobility of juvenile whale sharks and demonstrate their connectivity across the Sulu and Bohol Seas, highlighting the importance of the area for this endangered species

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., GonzĂĄlez Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-MacĂ­as, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a CiĂȘncia e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    corecore