25 research outputs found

    Optimisation multicritère des itinéraires pour transport des marchandises dangereuses en employant une évaluation en logique floue du risque et la simulation du trafic à base d'agents

    No full text
    Everyday thousands of trucks transporting hundreds of thousands of tons of dangerous goods by various modalities and both within and across nations. However, the term “dangerous” indicates an intrinsic adversity that characterize these products, which can manifest in an accident leading to release of a hazardous substance (e.g. radioactive, flammable, explosive etc.). In this situation, the consequences can be lethal to human beings, other living organisms and damage the environment and public/private properties.The importance of dangerous goods boils down to the significant economic benefits that generates. In fact, one cannot deny the contribution of the transport of all fossil fuel derived product, which represents more than 60% of dangerous goods transported in Europe. Eni, the Italian leading petrochemical company, every day operates a fleet of about 1,500 trucks, which performs numerous trips from loading terminals to filling stations. Distribution of petroleum products is a risky activity, and an accident during the transportation may lead to serious consequences.Aware of what is at stake, the division Eni R&M - Logistics Secondary, historically active in Genoa headquarters, is collaborating since 2002 with the DIBRIS department at University of Genoa, and the CRC at Mines ParisTech, with the purpose of studying possible improvements regarding safety in transport of dangerous goods, particularly petroleum products. Over years, this collaboration has led to the development of different technologies and mainly to an information and decision support system. The major component of this system is a platform for monitoring Eni fleet, at the national level, to deliver the products to the distribution points, called the Transport Integrated Platform (TIP). These vehicles are equipped with a device capable of transmitting data stream in real-time using a GPRS modem. The data transmitted can be of different nature and contain information about the state of the vehicle and occurred events during the trip. These data are intended to be received by centralized servers then get processed and stored, in order to support various applications within the TIP.With this in mind, the studies undertaken throughout the thesis are directed towards the development of a proposal to further minimize the risk related to the transportation of dangerous goods. In other words, a trade-off based model for route selection taking into consideration economic and safety factors. The objective is prompted by the need to support existent regulations and safety standards, which does not assure a full warranty against accidents involving dangerous goods.The goal is carried out by considering the existent system as basis for developing an Intelligent Transportation System (ITS) aggregating multiple software platforms. These platforms should allow planners and decision makers to monitor in real-time their fleet, to assess risk and evaluate all possible routes, to simulate and create different scenarios, and to assist at finding solutions to particular problems.Throughout this dissertation, I highlight the motivation for such research work, the related problem statements, and the challenges in dangerous goods transport. I introduce the TIP as the core for the proposed ITS architecture. For simulation purposes, virtual vehicles are injected into the system. The management of the data collection was the subject of technical improvement for more reliability, efficiency and scalability in real-time monitoring of dangerous goods shipment. Finally, I present a systematic explanation of the methodology for route optimization considering both economic and risk criteria. The risk is assessed based on various factors mainly the frequency of accident leading to hazardous substance release and its consequences. Uncertainty quantification in risk assessment is modelled using fuzzy sets theory.Chaque jour des milliers de camions transportant des centaines de milliers de tonnes de marchandises dangereuses par diverses modalités. Toutefois, le terme “dangereux” indique une adversité intrinsèque qui caractérise ces produits transportés, et qui peuvent se manifester lors d'un accident entraînant la fuite d'une substance dangereuse. Dans une telle situation, les conséquences peuvent nuire à l'environnement et létal pour l'humain.L'importance des marchandises dangereuses revient aux bénéfices économiques considérables générés. En fait, on ne peut nier la contribution du transport des produits dérivés de combustibles fossiles, ce qui représente plus de 60% des marchandises dangereuses transportées en Europe. Eni, la société italienne leader de pétrochimie, gère chaque jour une flotte d'environ 1.500 camions, qui effectuent de nombreuses expéditions. Pourtant la distribution de produits pétroliers est une activité à grande risques, et tout accident lors du transport peut entraîner de graves conséquences.Consciente des enjeux, la division Eni R&M - Logistique Secondaire, historiquement actif au siège de Gênes, collabore depuis 2002 avec le DIBRIS à l'Université de Gênes, et le CRC à Mines ParisTech, dans le but d'étudier les améliorations possibles en matière de sûreté dans le transport de marchandises dangereuses. Au fil des ans, cette collaboration a permis le développement d'un système d'information et décisionnel. Le composant principal de ce système est une plate-forme de surveillance de la flotte Eni appelé TIP (Transport Integrated Platform), pour livrer les produits vers les points de distributions. Ces véhicules sont équipés d'un dispositif capable de transmettre des flux de données en temps réel en utilisant un modem GPRS. Les données transmises peuvent être de nature différente et contenir des informations sur l'état du véhicule, le produit et les événements détectés durant l'expédition. Ces données sont destinées à être reçues par des serveurs centralisés puis traitées et stockées, afin de soutenir diverses applications du TIP.Dans ce contexte, les études menées tout au long de la thèse sont dirigés vers le développement d'une proposition visant à réduire davantage les risques liés au transport de marchandises dangereuses. En d'autres termes, un modèle basé sur le compromis entre les facteurs économiques et sûretés pour le choix de l'itinéraire. L'objectif est motivé par la nécessité de soutenir les règlements et les normes de sécurité existantes, car ils ne garantissent pas totalement contre les accidents entrainant des marchandises dangereuses.L'objectif est effectué en prenant en compte le système existant comme base pour l'élaboration d'un système de transport intelligent (STI) regroupant plusieurs plates-formes logicielles. Ces plates-formes doivent permettre aux planificateurs et aux décideurs de suivre en temps réel leur flotte, à évaluer les risques et tous les itinéraires possibles, de simuler et de créer différents scénarios, et d'aider à trouver des solutions à des problèmes particuliers.Tout au long de cette thèse, je souligne la motivation pour ce travail de recherche, les problématiques, et les défis de transport de marchandises dangereuses. Je présente le TIP comme le noyau de l'architecture proposée du STI. Pour les besoins de la simulation, les véhicules virtuels sont injectés dans le système. La gestion de la collecte des données a été l'objet d'une amélioration technique pour plus de fiabilité, d'efficacité et d'évolutivité dans le cadre de la surveillance en temps réel. Enfin, je présente une explication systématique de la méthode d'optimisation des itinéraires considérant les critères économiques et de risques. Le risque est évalué en fonction de divers facteurs notamment la fréquence d'accidents entrainant des marchandises dangereuses, et ses conséquences. La quantification de l'incertitude dans l'évaluation des risques est modélisée en utilisant la théorie des ensembles flous

    Multi-criteria route optimization for dangerous goods transport using fuzzy risk assessment and agent-based traffic simulation

    No full text
    Chaque jour des milliers de camions transportant des centaines de milliers de tonnes de marchandises dangereuses par diverses modalités. Toutefois, le terme “dangereux” indique une adversité intrinsèque qui caractérise ces produits transportés, et qui peuvent se manifester lors d'un accident entraînant la fuite d'une substance dangereuse. Dans une telle situation, les conséquences peuvent nuire à l'environnement et létal pour l'humain.L'importance des marchandises dangereuses revient aux bénéfices économiques considérables générés. En fait, on ne peut nier la contribution du transport des produits dérivés de combustibles fossiles, ce qui représente plus de 60% des marchandises dangereuses transportées en Europe. Eni, la société italienne leader de pétrochimie, gère chaque jour une flotte d'environ 1.500 camions, qui effectuent de nombreuses expéditions. Pourtant la distribution de produits pétroliers est une activité à grande risques, et tout accident lors du transport peut entraîner de graves conséquences.Consciente des enjeux, la division Eni R&M - Logistique Secondaire, historiquement actif au siège de Gênes, collabore depuis 2002 avec le DIBRIS à l'Université de Gênes, et le CRC à Mines ParisTech, dans le but d'étudier les améliorations possibles en matière de sûreté dans le transport de marchandises dangereuses. Au fil des ans, cette collaboration a permis le développement d'un système d'information et décisionnel. Le composant principal de ce système est une plate-forme de surveillance de la flotte Eni appelé TIP (Transport Integrated Platform), pour livrer les produits vers les points de distributions. Ces véhicules sont équipés d'un dispositif capable de transmettre des flux de données en temps réel en utilisant un modem GPRS. Les données transmises peuvent être de nature différente et contenir des informations sur l'état du véhicule, le produit et les événements détectés durant l'expédition. Ces données sont destinées à être reçues par des serveurs centralisés puis traitées et stockées, afin de soutenir diverses applications du TIP.Dans ce contexte, les études menées tout au long de la thèse sont dirigés vers le développement d'une proposition visant à réduire davantage les risques liés au transport de marchandises dangereuses. En d'autres termes, un modèle basé sur le compromis entre les facteurs économiques et sûretés pour le choix de l'itinéraire. L'objectif est motivé par la nécessité de soutenir les règlements et les normes de sécurité existantes, car ils ne garantissent pas totalement contre les accidents entrainant des marchandises dangereuses.L'objectif est effectué en prenant en compte le système existant comme base pour l'élaboration d'un système de transport intelligent (STI) regroupant plusieurs plates-formes logicielles. Ces plates-formes doivent permettre aux planificateurs et aux décideurs de suivre en temps réel leur flotte, à évaluer les risques et tous les itinéraires possibles, de simuler et de créer différents scénarios, et d'aider à trouver des solutions à des problèmes particuliers.Tout au long de cette thèse, je souligne la motivation pour ce travail de recherche, les problématiques, et les défis de transport de marchandises dangereuses. Je présente le TIP comme le noyau de l'architecture proposée du STI. Pour les besoins de la simulation, les véhicules virtuels sont injectés dans le système. La gestion de la collecte des données a été l'objet d'une amélioration technique pour plus de fiabilité, d'efficacité et d'évolutivité dans le cadre de la surveillance en temps réel. Enfin, je présente une explication systématique de la méthode d'optimisation des itinéraires considérant les critères économiques et de risques. Le risque est évalué en fonction de divers facteurs notamment la fréquence d'accidents entrainant des marchandises dangereuses, et ses conséquences. La quantification de l'incertitude dans l'évaluation des risques est modélisée en utilisant la théorie des ensembles flous.Everyday thousands of trucks transporting hundreds of thousands of tons of dangerous goods by various modalities and both within and across nations. However, the term “dangerous” indicates an intrinsic adversity that characterize these products, which can manifest in an accident leading to release of a hazardous substance (e.g. radioactive, flammable, explosive etc.). In this situation, the consequences can be lethal to human beings, other living organisms and damage the environment and public/private properties.The importance of dangerous goods boils down to the significant economic benefits that generates. In fact, one cannot deny the contribution of the transport of all fossil fuel derived product, which represents more than 60% of dangerous goods transported in Europe. Eni, the Italian leading petrochemical company, every day operates a fleet of about 1,500 trucks, which performs numerous trips from loading terminals to filling stations. Distribution of petroleum products is a risky activity, and an accident during the transportation may lead to serious consequences.Aware of what is at stake, the division Eni R&M - Logistics Secondary, historically active in Genoa headquarters, is collaborating since 2002 with the DIBRIS department at University of Genoa, and the CRC at Mines ParisTech, with the purpose of studying possible improvements regarding safety in transport of dangerous goods, particularly petroleum products. Over years, this collaboration has led to the development of different technologies and mainly to an information and decision support system. The major component of this system is a platform for monitoring Eni fleet, at the national level, to deliver the products to the distribution points, called the Transport Integrated Platform (TIP). These vehicles are equipped with a device capable of transmitting data stream in real-time using a GPRS modem. The data transmitted can be of different nature and contain information about the state of the vehicle and occurred events during the trip. These data are intended to be received by centralized servers then get processed and stored, in order to support various applications within the TIP.With this in mind, the studies undertaken throughout the thesis are directed towards the development of a proposal to further minimize the risk related to the transportation of dangerous goods. In other words, a trade-off based model for route selection taking into consideration economic and safety factors. The objective is prompted by the need to support existent regulations and safety standards, which does not assure a full warranty against accidents involving dangerous goods.The goal is carried out by considering the existent system as basis for developing an Intelligent Transportation System (ITS) aggregating multiple software platforms. These platforms should allow planners and decision makers to monitor in real-time their fleet, to assess risk and evaluate all possible routes, to simulate and create different scenarios, and to assist at finding solutions to particular problems.Throughout this dissertation, I highlight the motivation for such research work, the related problem statements, and the challenges in dangerous goods transport. I introduce the TIP as the core for the proposed ITS architecture. For simulation purposes, virtual vehicles are injected into the system. The management of the data collection was the subject of technical improvement for more reliability, efficiency and scalability in real-time monitoring of dangerous goods shipment. Finally, I present a systematic explanation of the methodology for route optimization considering both economic and risk criteria. The risk is assessed based on various factors mainly the frequency of accident leading to hazardous substance release and its consequences. Uncertainty quantification in risk assessment is modelled using fuzzy sets theory

    Can data mining help car sharing?

    No full text
    Mobility and congestion are critical concerns for every city, be it large or small,due to the economic and environmental challenges that they pose. Manyanalysts have advocated addressing these issues by encouraging newmultimodal services and fostering the deployment of more efficient ondemandmobility services. In this work, we focus on car sharing, a mode oftransportation that is gaining increasing popularity with its promise to reducetraffic congestion, parking demands and pollution in our cities. There are twomain classes of car sharing services: station-based car sharing or free floatingcar-sharing. In the former, shared vehicles are picked up and dropped off atdesignated (and reserved) locations within the service area, called stations. Infree floating car sharing, instead, cars can be picked up and dropped offanywhere within the service area, as long as parking is permitted at thatlocation. The two approaches have each advantages and disadvantages.Free floating car sharing offers a lot of flexibility to customers, but in citieswere finding a parking spot is troublesome, the reserved parking spaceoffered by station-based car sharing may appeal more

    Weak signals in the mobility landscape: car sharing in ten European cities

    No full text
    Abstract Car sharing is one the pillars of a smart transportation infrastructure, as it is expected to reduce traffic congestion, parking demands and pollution in our cities. From the point of view of demand modelling, car sharing is a weak signal in the city landscape: only a small percentage of the population uses it, and thus it is difficult to study reliably with traditional techniques such as households travel diaries. In this work, we depart from these traditional approaches and we leverage web-based, digital records about vehicle availability in 10 European cities for one of the major active car sharing operators. We discuss which sociodemographic and urban activity indicators are associated with variations in car sharing demand, which forecasting approach (among the most popular in the related literature) is better suited to predict pickup and drop-off events, and how the spatio-temporal information about vehicle availability can be used to infer how different zones in a city are used by customers. We conclude the paper by presenting a direct application of the analysis of the dataset, aimed at identifying where to locate maintenance facilities within the car sharing operation area

    A scalable communication middleware for real-time data collection of dangerous goods vehicle activities

    No full text
    International audienceRecently, real-time monitoring of Dangerous Goods Transport has drawn a lot of attention, thanks to its capability to provide a better visibility on dynamically moving vehicles, particularly through a Web Mapping application. Yet, one of the challenges to be faced designing such a system is an effective architecture for real-time collection of telemetry and event data conveyed by the vehicle on-board system, such the Global Positioning System coordinates. In this paper, we have focused on optimizing the process for managing a large quantity of data transmitted via network sockets that use the Transmission Control Protocol. Then we prove the process efficiency through performance and scalability tests. The middleware is being implemented as a part of a project that aims to monitor the Italian petrochemical company Eni’s oil trucks shipment along Europe and USA territories

    Ranking triangular fuzzy numbers using fuzzy set inclusion index

    No full text
    In this paper, an original ranking operator is introduced for Triangular Fuzzy Numbers. The purpose is to elaborate fast and efficient algorithms dealing with complicated operations and big data in fuzzy decision-making. The proposed ranking operator takes advantage of the topological relationship of two triangles, besides the Inclusion Index concept \u2014 which is an index indicating the Degree of Inclusion in the MIN of two Fuzzy Numbers, a way to approach the \u201dstrongly included in\u201d. Consequently, the ranking result can mostly be deduced directly, allowing an efficient ranking process

    An original approach to ranking fuzzy numbers by inclusion index and Bitset Encoding

    No full text
    International audienceA variety of methods for ranking fuzzy sets has been suggested. Generally, these methods fall under two main categories: a fuzzy-real sets mapping, a dominance relation of one fuzzy set over another. The original approach proposed in this paper belongs to the second category, as the ranking is based on the degree of inclusion in the MIN of two fuzzy numbers. The novelty lies mainly in the intuitive connection between the topological relationship of fuzzy shapes (triangles, trapezoids, etc.) and the measure of inclusion or dominance referred as inclusion index. This connection led to the classification of different topological relationships into classes identified by a binary pattern. This operation is referred to as Bitset Encoding. Consequently, the outcome of a ranking is already decided for most cases by merely identifying its pattern. Ultimately, the method is validated by the axiomatic system of Wang and Kerre and proven to be a reliable, efficient and strong potential alternative to the other prominent methods
    corecore