3,708 research outputs found

    Chaotic motions in the real fuzzy electronic circuits

    Get PDF
    Fuzzy electronic circuit (FEC) is firstly introduced, which is implementing Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be applied to encrypt high confidential signals, because of its high complexity, sensitiveness of initial conditions, and unpredictability. Consequently, generating chaotic signals on electronic circuit to produce real electrical signals applied to secure communications is an exceedingly important issue. However, nonlinear systems are always composed of many complex equations and are hard to realize on electronic circuits. Takagi-Sugeno (T-S) fuzzy model is a powerful tool, which is described by fuzzy IF-THEN rules to express the local dynamics of each fuzzy rule by a linear system model. Accordingly, in this paper, we produce the chaotic signals via electronic circuits through T-S fuzzy model and the numerical simulation results provided by MATLAB are also proposed for comparison. T-S fuzzy chaotic Lorenz and Chen-Lee systems are used for examples and are given to demonstrate the effectiveness of the proposed electronic circuit. © 2013 Shih-Yu Li et al

    A systematic simulation methodology for LNG ship operations in port waters: a case study in Meizhou Bay

    Get PDF
    With the increment for liquefied natural gas (LNG) demand, LNG carriers are becoming larger in size. The operational safety of the carriers and the associated terminals is increasingly attracting attention. This is particularly true when a large LNG vessel approaches a terminal, requiring a detailed investigation of ship handling in port waters, especially in certain unusual cases. A full mission simulator provides an effective tool for research and training in operations of both port terminals and ships. This paper presents an experimental design methodology of the full mission simulation. The details as to how the simulation is achieved are described, and the simulation strategies applicable to LNG ships are specified. A typical case study is used to demonstrate and verify the proposed design methodology. The proposed methodology of the full mission simulation provides guidance for port safety research, risk evaluation and seafarer training. © 2017 Institute of Marine Engineering, Science & Technolog

    Identification of a Novel Binding Partner of Phospholipase Cβ1: Translin-Associated Factor X

    Get PDF
    Mammalian phospholipase Cβ1 (PLCβ1) is activated by the ubiquitous Gαq family of G proteins on the surface of the inner leaflet of plasma membrane where it catalyzes the hydrolysis of phosphatidylinositol 4,5 bisphosphate. In general, PLCβ1 is mainly localized on the cytosolic plasma membrane surface, although a substantial fraction is also found in the cytosol and, under some conditions, in the nucleus. The factors that localize PLCβ1in these other compartments are unknown. Here, we identified a novel binding partner, translin-associated factor X (TRAX). TRAX is a cytosolic protein that can transit into the nucleus. In purified form, PLCβ1 binds strongly to TRAX with an affinity that is only ten-fold weaker than its affinity for its functional partner, Gαq. In solution, TRAX has little effect on the membrane association or the catalytic activity of PLCβ1. However, TRAX directly competes with Gαq for PLCβ1 binding, and excess TRAX reverses Gαq activation of PLCβ1. In C6 glia cells, endogenous PLCβ1 and TRAX colocalize in the cytosol and the nucleus, but not on the plasma membrane where TRAX is absent. In Neuro2A cells expressing enhanced yellow and cyano fluorescent proteins (i.e., eYFP- PLCβ1 and eCFP-TRAX), Förster resonance energy transfer (FRET) is observed mostly in the cytosol and a small amount is seen in the nucleus. FRET does not occur at the plasma membrane where TRAX is not found. Our studies show that TRAX, localized in the cytosol and nucleus, competes with plasma-membrane bound Gαq for PLCβ1 binding thus stabilizing PLCβ1 in other cellular compartments

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by G∘HG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of G∘HG \circ H, and get upper and lower bounds of λ3(G∘H)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    Synthesis and characterization of hybrid organic-inorganic materials based on sulphonated polyamideimide and silica

    Get PDF
    The preparation of hybrid organic–inorganic membrane materials based on a sulphonated polyamideimide resin and silica filler has been studied. The method allows the sol–gel process to proceed in the presence of a high molecular weight polyamideimide, resulting in well dispersed silica nanoparticles (<50 nm) within the polymer matrix with chemical bonding between the organic and inorganic phases. Tetraethoxysilane (TEOS) was used as the silica precursor and the organosilicate networks were bonded to the polymer matrix via a coupling agent aminopropyltriethoxysilane (APTrEOS). The structure and properties of these hybrid materials were characterized via a range of techniques including FTIR, TGA, DSC, SEM and contact angle analysis. It was found that the compatibility between organic and inorganic phases has been greatly enhanced by the incorporation of APTrEOS. The thermal stability and hydrophilic properties of hybrid materials have also been significantly improved

    On the conservation of the slow conformational dynamics within the amino acid kinase family: NAGK the paradigm

    Get PDF
    N-Acetyl-L-Glutamate Kinase (NAGK) is the structural paradigm for examining the catalytic mechanisms and dynamics of amino acid kinase family members. Given that the slow conformational dynamics of the NAGK (at the microseconds time scale or slower) may be rate-limiting, it is of importance to assess the mechanisms of the most cooperative modes of motion intrinsically accessible to this enzyme. Here, we present the results from normal mode analysis using an elastic network model representation, which shows that the conformational mechanisms for substrate binding by NAGK strongly correlate with the intrinsic dynamics of the enzyme in the unbound form. We further analyzed the potential mechanisms of allosteric signalling within NAGK using a Markov model for network communication. Comparative analysis of the dynamics of family members strongly suggests that the low-frequency modes of motion and the associated intramolecular couplings that establish signal transduction are highly conserved among family members, in support of the paradigm sequence→structure→dynamics→function © 2010 Marcos et al

    TEMPRANILLO is a regulator of juvenility in plants

    Get PDF
    Many plants are incapable of flowering in inductive daylengths during the early juvenile vegetative phase (JVP). Arabidopsis mutants with reduced expression of TEMPRANILLO (TEM), a repressor of FLOWERING LOCUS T (FT) had a shorter JVP than wild-type plants. Reciprocal changes in mRNA expression of TEM and FT were observed in both Arabidopsis and antirrhinum, which correlated with the length of the JVP. FT expression was induced just prior to the end of the JVP and levels of TEM1 mRNA declined rapidly at the time when FT mRNA levels were shown to increase. TEM orthologs were isolated from antirrhinum (AmTEM) and olive (OeTEM) and were expressed most highly during their juvenile phase. AmTEM functionally complemented AtTEM1 in the tem1 mutant and over-expression of AmTEM prolonged the JVP through repression of FT and CONSTANS (CO). We propose that TEM may have a general role in regulating JVP in herbaceous and woody species

    A Numerical Study on Metallic Powder Flow in Coaxial Laser Cladding

    Get PDF
    In coaxial laser cladding, the quality and property of deposition products are greatly influenced by the powder flow, which is responsible to transport additive materials to the deposition point on a substrate precisely. The metallic powder flow in coaxial laser cladding is simulated by a numerical model based on the gas-solid flow theory. The characteristics of powder concentration distribution between coaxial nozzle and deposition point for a kind of nickel based alloy powder are studied by the proposed model. The relationship between the process parameters and powder flow characteristics, such as focus distance from the nozzle exit and maximum powder concentration, is analyzed to optimize the powder feeding process. In addition, the influence of substrate with different surface shapes on the powder flow is investigated. The results can be used as a guideline for the location of the substrate and the selection of proper processing parameters for coaxial laser cladding
    • …
    corecore