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Abstract:   

The preparation of hybrid organic-inorganic membrane materials based on a 

sulphonated polyamideimide resin and silica filler has been studied. The method 

allows the sol-gel process to proceed in the presence of a high molecular weight 

polyamideimide, resulting in well dispersed silica nanoparticles (<50nm) within the 

polymer matrix with chemical bonding between the organic and inorganic phases. 

Tetraethoxysilane (TEOS) was used as the silica precursor and the organosilicate 

networks were bonded to the polymer matrix via a coupling agent 

aminopropyltriethoxysilane (APTrEOS).  The structure and properties of these hybrid 

materials were characterized via a range of techniques including FTIR, TGA, DSC, 

SEM and contact angle analysis.  It was found that the compatibility between organic 

and inorganic phases has been greatly enhanced by the incorporation of APTrEOS.   

The thermal stability and hydrophilic properties of hybrid materials have also been 

significantly improved.  

Keywords: sulphonated polyamideimide, silica, sol-gel process, hybrid materials 

 

Introduction 

Over recent years, the nanostructured organic-inorganic hybrid materials have 

received great attention as membrane materials due to the extraordinary properties of 

the hybrid materials. The hybrid nanostructured materials combine both the attractive 

properties of a mechanical and thermally stable inorganic phase and the specific 

chemical reactivity and flexibility of the organic phase [1-3]. The sol-gel process is 

one of the most efficient methods for the preparation of hybrid organic-inorganic 

materials by providing either specific molecular interactions or covalent linkages 

between phases. The advantage of the sol-gel technique for preparing hybrid materials 

is the low reaction temperature required (e.g. room temperature) which enables the 

incorporation of inorganic elements into organic materials without deterioration of 

their functionality [4-8]. The sol-gel method consists of an initial hydrolysis reaction 

and a subsequent condensation and then removal of the solvents, resulting in 

formation of a three-dimensional metal oxide network. These reactions are typically 
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catalysed by an acid or a base and occur concurrently. Variables such as the alkoxide 

structure, the pH of the reaction medium, the type of solvent, the ratio of water and 

catalyst to the alkoxide, the reaction temperature and pressure, and the overall 

concentration of reactants all contribute to the final morphology and properties [8-11]. 

Under acid conditions, the hydrolysis reaction is more rapid than condensation 

reactions. As a result, acid-catalysted systems tend to consist of linear or random 

branches. On the other hand, base-catalysed systems tend to have highly branched 

non-interpenetrating clusters [12].  

 

Most of the properties of hybrid materials are dependent on their structural and 

chemical composition as well as the dynamic properties inside the hybrid. A 

conglomerate of rigid oriented polyimide structures with a definite polarization, as 

well as the possibility of their interaction with the surrounding substrates via 

hydrogen bonds and other weak short-range forces, gives polyimides undisputable 

advantages over other polymers, and their unique chemical stability considerably 

extends the possibility of using these polymers for the treatment and desalination of 

water. However, the hydrophobicity of polyimides renders them susceptible to fouling 

by natural organic compounds in water treatment applications. This problem can be 

solved on the macromolecular level if methods are available for preparing structures 

with a hydrophilic component and a reliable rigid backbone segment. These provide, 

in turn, interchain packing with a very narrow free volume distribution [13-15].  

In this study, a high molecular weight polyamideimide with a hydrophilic component 

(-SO3H) was used as the raw polymer matrix material for the synthesis of the hybrid 

polyamideimide/silica materials. It was synthesized by direct polymerization using a 

diimide-dicarboxylic acid and sulphonated diamine monomers. There are two main 

reasons that we chose sulphonated polyamideimide. Firstly, aromatic polyamideimide 

bring together both high thermal stability and high permeability and permselectivity 

characteristics of polyimides and superior mechanical properties of polyamides. In 

particular, the polyamide unit can facilitate hydrogen bonding to other components 

having either a proton donor or a proton acceptor group [12, 15]. Secondly, both 

amide and sulphonating groups help to improve the hydrophilic properties of the 

hybrid materials, which is essential for this material to be used for water separation 

application. 
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One of the key issues for preparing a polymeric-inorganic hybrid material is the 

dispersion of the inorganic nanoparticles in the polymer matrix uniformly while 

aggregation is avoided. In the majority of previous studies, the inorganic phase is not 

covalently coupled to the polymer phase, and in many cases, aggregation of particles 

occurs. The influence of the interaction between the polymer and the inorganic 

component on the morphology of the hybrids is the primary concern. The aim of this 

study is to develop a highly dispersed homogeneous material of organic and inorganic 

phases on a nano-scale which could be potentially used for water separation 

membrane applications.  

 

Experimental methods 

Materials 

1,3-Bis(3-aminophenoxy)benzene (TPE-R) was obtained from Chriskew Co., USA. 

1,2,4-benzenetricarboxylic acid anhydride (also known as trimellitic anhydride, 

TMA), 2,5-diamino benzene sulfonic acid (2,5-DABS), 3-aminopropyltriethoxysilane 

(APTrEOS), tetraethoxysilane (TEOS), 1-methyl-2-pyrrolidinone (NMP, 99%) and 

dimethyl sulfoxide (DMSO, 99%), triethylamine (Et3N), triphenylphosphite (TPP), 

pyridine and calcium chloride (CaCl2) were obtained from Aldrich. All the chemicals 

were used as received and without further purification. 
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Figure 1. Synthesis scheme of sulphonated polyamideimide 

 

 

 

Aqueous-based synthesis of the diimide dicarboxylic acid monomer using TMA and 

TPE-R 

 

1,2,4- Benzenetricarboxylic acid anhydride (TMA) (11.52g, 60 mmol) was 

hydrolysed completely to the 1,2,4- Benzenetricarboxylic acid by stirring with 

degassed water (200ml) in a sealed Parr pressure vessel at 130°C for 1 hr.  The vessel 

was allowed to cool to approximately 30-40°C before being opened.  1,3-Bis(3-

aminophenoxy)benzene (TPE-R) (8.77g, 30 mmol) was slowly added to the Parr 
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pressure vessel with rapid stirring.  After several cycles of evacuation and flushing, a 

positive pressure of approximately 20 psi of nitrogen gas was applied to the vessel.  

The reaction mixture was heated to 180°C and held for 2 hr with stirring.  After 

cooling, the off white product was removed from the reactor vessel, filtered and 

washed with hot water (100ml) and then methanol (100ml).  The product diimide 

dicarboxylic acid was dried in vacuum oven at approximately 50 – 60°C overnight 

and collected as off white solid (18.17g, 90% yield).    

δH  (DMSO-d6, 400 MHz) 8.40 (d, 2H, aromatic on TMA ortho to acid), 8.25 (s, 2H, 

aromatic on TMA ortho to acid), 8.05 (d, 2H, aromatic on TMA meta to acid), 7.45 (d 

and q, 4H aromatic on TPE-R ortho to imide and 1H aromatic on TPE-R middle ring 

meta to ether), 7.20 (d, 4H aromatic on TPE-R meta to imide), 6.85 (d, 2H, aromatic 

on TPE-R middle ring ortho to ether), 6.77ppm (s, 1H, aromatic on TPE-R middle 

ring ortho to ether).  13C (DMSO-d6, 400 MHz) 166.3, 165.8, 157.8, 156.0, 136.5, 

135.4, 134.9, 132.0, 131.4, 129.1, 127.2, 123.8, 123.3, 119.0, 114.0, 109.7ppm.  FT-

IR (cm
-1

): 1782 (imide C=O sym), 1721 (imide C=O assym), 1698 (shoulder peak 

COOH), 1388 (C-N), 1226 (aromatic ether), 1102, 726cm
-1

 (imide ring deformation).  

DSC: Tm 333°C. 

 

Synthesis of the sulphonated polyamideimide using monomers 2,5-DABS and the 

diimide dicarboxylic acid. 

 

The diimide dicarboxylic acid described in Section 2.2.1 (TMA: TPE-R: TMA) 

(4.48g, 7.0 mmol) was dissolved in dry NMP (80ml).  2,5-DABS (90%, 1.4g, 7.7 

mmole), dry triethylamine (2.0 ml), calcium chloride (3.0g, 27.0 mmol), triphenyl 

phosphite (7.0 ml), and dry pyridine (7.0ml) were added to the solution and refluxed 

over 4 h.  The product was precipitated by pouring into a stirring solution of methanol 

(400 ml) and collected by filtration.  The product was washed with hot water (2 x 200 

ml), methanol (200 ml) and then stirred with 1.0N hydrochloric acid (50ml) at room 

temperature overnight.  Finally the yellow solid product was collected by filtration 

and dried under vacuum at 50-60°C overnight and at 140-150°C over 12h (5.2g, 93% 

yield). 

δH  (DMSO-d6, 400 MHz)  11.7 (s, N-H amide), 10.7 (s, N-H amide), 8.60-8.30 (m, 

5H Ar-H), 8.25-7.90 (m, 5H Ar-H), 7.5 (d, 4H Ar-H), 7.2 (d, 4H Ar-H), 6.85-6.65 (m, 

3H Ar-H).  13C (DMSO-d6, 400 MHz) 166.5, 163.3, 162.0, 157.8, 156.0, 140.5, 
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136.4, 134.5, 132.8, 132.2, 131.8, 131.1, 129.6, 127.7, 124.5, 124.0, 122.7, 122.1, 

120.6, 119.5, 114.3, 110.1ppm.  FT-IR (cm
-1

): 3282 (amide N-H), 1778 (imide C=O 

sym), 1723 (imide C=O assym), 1677 (amide C=O), 1380 (C-N), 1226 (aromatic 

ether), 1023 (S=O sym), 723cm
-1

 (imide ring deformation).  GPC (DMF): Mn 42,000, 

Mw 73,000. 

 

Synthesis of the polyamideimide/SiO2 hybrid materials 

 

The synthesis procedure for the polyamideimide/silica hybrid film is shown in Figure 

2. At first, the sulphonated polyamideimide was dissolved in 1-methyl-2-

pyrrolidinone (NMP) or dimethyl sulfoxide (DMSO) to obtain a homogeneous 7 wt% 

solution. Then the polyamideimide was functionalised by adding the predetermined 

amount of APTrEOS (Aldrich, 99%) into the solution and stirred for 2 hr. The degree 

of functionalisation with APTrEOS was controlled by varying the amount of 

APTrEOS added into the organic polyamideimide solution. Following this, the 

hydrolysed TEOS sol was added drop wise to the functionised solution under 

vigorous stirring. The reaction was kept for 2 hr at room temperature. The resulting 

homogeneous mixture was cast onto polypropylene dishes to the desired thickness 

and the solvent was removed slowly in a vacuum oven over a few days. Finally, the 

film sample was dried at 150°C to remove residual water and solvent.  A pure 

sulphonated polyamideimide film sample was prepared as a control sample for 

comparison experiment. 

 

 

Figure 2. The preparation process of polyamideimide/SiO2 hybrid membrane 
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The hydrolysed TEOS sol was obtained by the treatment of TEOS in NMP/H2O, with 

a TEOS/NMP/H2O mole ratio of 1:2.6:2.0 and a pH value of 2; similar to the 

conditions described by Cornelius et al. [8]. The stoichiometry of the TEOS and water 

was based on half the number of hydrolysable substituents in the TEOS. The pH of 

the solution was maintained by adding 37% HCl. The mixture was normally stirred 

for >20 hr at room temperature to allow the formation of a clear TEOS sol.  

 

Material Characterisation 

FTIR: Fourier transform infrared spectroscopy (FTIR) was performed on a Perkin-

Elmer Spectrum 2000 FTIR instrument to assess the functional structure of 

sulphonated polyamideimide and hybrid film samples. FTIR spectra of thin films or 

KBr discs were obtained with an 8 cm
-1

 resolution, from 400 to 4000 cm
-1

 wavelength. 

NMR:  Nuclear magnetic resonance (NMR) was employed to confirm the molecular 

structure of the synthesised sulphonated polyamideimide using either a Bruker DRX 

500 or a Bruker Av 400 NMR spectrometer.  
1
H and 

13
C NMR spectra were recorded 

in dimethyl sulfoxide (DMSO)-d6 or deuterated chloroform (CDCl3).  

GPC: Molecular weights of the sulphonated polyamideimides were evaluated using a 

Waters 410 Gel permeation chromatography (GPC) instrument fitted with an RI 

detector. Tetrahydrofuran (THF) or N,N-dimethylformamide (DMF) was used as the 

eluent and polystyrene was used as the standard. 

DSC: Differential scanning calorimetry (DSC) was conducted using a Mettler-Toledo 

DSC821e differential scanning calorimeter to assess the thermal properties of the 

sulphonated polyamideimide and hybrid film samples. The analysis was conducted 

under nitrogen with samples of approximately 5-10 mg at a scan rate of 10°C min
-1

 

from 10 to 450°C.  
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TGA: Thermal stability of the hybrid film samples was assessed using a Perkin-Elmer 

Pyris 1 thermogravimetry analysis (TGA) instrument. Experiments were conducted on 

3-5 mg thin film samples heated in flowing nitrogen at a heating rate of 20°C/min 

from 30 to 800°C.  

Contact angle:  The hydrophilic/hydrophobic properties of dried film samples were 

assessed by a KSV contact angle meter (CAM200) equipped with the video capturing 

system. Static contact angles were measured by the sessile drop method. About 8 μL 

of single water drop was formed on the levelled surface of the membrane for contact 

angle measurements.  

SEM: The surface morphology of the hybrid film samples were studied by a Philips 

scanning electronic microscope (SEM) (ESEM Philips XL30). Energy dispersive X-

ray spectrometry (EDS) was running by an EDAX detector on the SEM with a voltage 

of 15 kV and a working distance of 15 mm. 

 

Results and discussion 

 

Structure of sulphonated polyamideimide 

The synthesis of the sulphonated polyamideimide is a two-step process as shown in 

Figure 1. The first step is the synthesis of a diimide-dicarboxylic acid monomer via an 

aqueous synthesis technology [16-18]. The second step in the synthesis involved the 

reaction of the diimide-dicarboxylic acid with 2,5-DABS using a standard polyamide 

synthesis technique[19]. 

 

The diimide-dicarboxylic acid monomer (TMA:TPE-R:TMA) was prepared by the 

condensation of an aromatic diamine (TPE-R) with two mole equivalents of benzene 

tricarboxylic acid (TMA) in water (Figure1).  This one-step aqueous synthesis method 

is the most convenient method for synthesis of pure polyimides or diimide-

dicarboxylic acids.    The structure of the diimide-dicarboxylic acid monomer was 

confirmed by FTIR and NMR spectroscopy.  The IR, 
1
H and 

13
C NMR data are listed 
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in the synthesis of the sulphonated polyamideimide section and the NMR spectra are 

presented in Figure3, with peak positions assigned.   

 

 

Figure 3. 
1
H NMR and 

13
C NMR spectra of diimide dicarboxylic acid monomer 

 

The second step was prepared by a phosphorylation polycondensation of the diimide-

dicarboxylic acid (TMA:TPE-R:TMA) with 2,5-DABS using triphenylphosphite (TPP) 

and pyridine as the condensing agents (Figure 1).  Triethylamine (Et3N) was used to 

liberate the protonated amino groups for polymerization with diimide-dicarboxylic 

acid [20].  The polymerization proceeded homogeneously throughout the reaction and 

gave a viscous polymer solution, and the product precipitated out in a powder form by 

pouring into methanol solution. The sulphonated polyamideimide was in the 

triethylammonium sulphonate form and was converted to the proton form by treating 

with 1.0 N hydrochloric acid at room temperature overnight.  The completion of 

proton exchange was confirmed by the disappearance of the triethylamine peaks from 

the 
1
H NMR spectrum of the sulphonated polyamideimide.  The resulting sulphonated 

polyamideimide was obtained in high yield (93%) and high molecular weight 

(weight-average molecular weight of 73000 by DMF-GPC).   

 

The structure of the polymer was identified by FTIR and NMR spectroscopy.  The 

FTIR spectrum (Figure 4) shows a characteristic absorptions of the amide groups at 

3282, 1677cm
-1

 and those of the imide absorption bands at 1778, 1723, 1380 and 723 
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cm
-1 

[21].  The disappearance of the carbonyl (C=O) absorption band of the 

carboxylic acid group at around 1698 cm
-1

 indicated that the amide formation was 

completed. The symmetric vibration of sulfonic acid (O=S=O) group appeared at 

1023 cm
-1 

[21].    

 

 

Figure 4.  FTIR spectrum of sulphonated polyamideimide 

The 
1
H and 

13
C NMR data are listed in the synthesis of the sulphonated 

polyamideimide section and main characteristic peaks are shown in Figure 5. Two 

characteristic amide (N-H) peaks at 11.7 and 10.7 ppm were assigned to N-H of 

amide ortho and meta to sulfonic acid group respectively.  While the 
13

C NMR shows 

the carbonyl of the imide groups at 166.5ppm and carbonyl of amide groups at 163.3 

and 162.0 ppm, the carbonyl of carboxylic acid groups at 165.8 ppm was not observed 

in the spectrum.  Once again this proved the completion of the amide formation and 

agreed well with the results provided by FTIR spectroscopy. 
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Figure 5. Main peaks of 
1
H NMR and 

13
C NMR spectra of sulphonated 

polyamideimide. 

 

Structure of hybrid films 

The proposed reaction scheme for synthesis of sulphonated polyamideimide/silica 

hybrid materials is shown in Figure 6. The sol-gel reaction was carried out in the 

NMP or DMSO solution with HCl as a catalyst.  The sulphonated polyamideimide 

was firstly functionalised with the APTrEOS to create covalent bonds between the 

polyamideimide chain and the silica network. The end product consisted of 

organosilicate domains covalently bonded to a polyamideimide matrix, with the silane 

being introduced either as side groups or as part of the crosslinked structure.  
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Figure 6. Reaction scheme of synthesis of sulphonated polyamideimide/silica hybrid 

materials. 
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In the reaction, APTrEOS was acting as a coupling agent. The amine group of 

APTrEOS opens the cyclic imide unit via nucleophilic attack on the carbonyl carbon 

[22].  This results in two amide bonds being formed, one to the silane moiety and one 

in the polymer backbone. Furthermore, the presence of the pendant APTrEOS groups 

on the functionalised polyamideimide facilitates chemical bonding with the 

hydrolysed TEOS sol via condensation reactions.  

The structural feature of the hybrid films was confirmed by the FTIR spectroscopy. 

Figure 7 shows the typical FTIR spectra of polyamideimide and 

polyamideimide/silica hybrid thin film samples. The characteristic absorption bands 

of imide group were observed near 1778, 1723, 1380 and 723 cm
-1

. The characteristic 

absorption bands of amide group were observed at 3282 and 1677 cm
-1

. When 

compared with the pure polyamideimide sample (spectrum a), the 

polyamideimide/silica hybrid film sample (spectrum b) shows the peak intensity 

change for both amide and imide groups. The decreasing intensity of the imide group 

and the increasing intensity of the amide group indicated the decrease of the imide 

ring and increase of the amide unit. This clearly confirms the coupling reaction 

between polyamideimide and APTrEOS.  

The FTIR spectrum of the polyamideimide/silica hybrid film (spectrum b) also shows 

the increase of the peak intensity at wavelengths 448, 960 and 1080 cm
-1

.  Peaks at 

448 cm-1 (symmetric Si-O-Si stretch) and 1080 cm-1 (asymmetric Si-O-Si stretch) 

are attributed to the Si-O-Si inorganic networks [21]. The peak intensity at 960 cm
-1

 is 

attributed to the Si-OH group which was formed from the hydrolysis of TEOS. These 

spectral changes indicate that the chemical bonding between the organic and 

inorganic phases was successfully achieved by the sol-gel reaction.  
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Figure 7.  FTIR spectra of polyamideimide (curve a) and polyamideimide/silica 

hybrid (curve b) thin films. 

Contact angle analysis 

Hydrophilicity can be measured as the contact angle between the membrane surface 

and a drop of water placed on the surface of the membrane. Table 1 lists the water 

contact angles of hybrid polyamideimide/SiO2 membranes. It was found the 

hydrophilicity of hybrid materials has been significantly improved when compared 

with the control sulphonated polyamideimide sample. This increase could be due to 

the hydrogen bonding of water to silanol groups that resulted from hydrolysis and 

condensation of TEOS.  

 

Table 1: The water contact angle of hybrid films.  

Samples SiO2 content, wt% Contact angle 

 polyamideimide 0% 98°  

Hybrid, 7 wt% SiO2 7% 72°  

Hybrid, 15 wt% SiO2 15% 69° 
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Thermal properties 

The thermal properties of the hybrid films were studied by TGA and DSC. Figure 8 

shows the TGA of hybrid films with different silica contents. A pure polyamideimide 

was used as a control sample for comparison. Generally, there are three main 

decomposition stages for all samples. The first weight loss occurred around 100°C 

attributable to the loss of absorbed water and solvent in the materials. The second 

weight loss occurred at around 250°C possibly due to the loss of the sulphonated 

group (–SO3H) and an aliphatic unit. In the third weight loss region (at 

temperatures >550°C corresponds to the thermal decomposition of the main chains of 

the polyamideimide.  

The hybrid samples were found to have higher thermal stability than the pure 

polyamideimide. With the incorporation of silica particles, the decomposition 

temperature of main chain of the polymer increased from about 580 to 622°C and the 

degradation temperature for the sulphonated group from the polymer increased from 

240 to 263°C. This could be explained by that the incorporation of inorganic particles 

made the polymer chain more rigid and tight. This reduced segmental mobility of the 

polymer chains and also inhibited chain packing, and hence improved the thermal 

stability of hybrid materials  

 

Figure 8: TGA of the hybrid films with different silica content. 
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Table 2 summarises the thermal properties of hybrid films including the TGA data 

and DSC results. All samples including the pure polyamideimide and the hybrid 

material revealed a good thermo-oxidative stability and a high glass transition 

temperature (Tg). There was no significant weight loss with the temperature up to 

290°C. With incorporation of silica particles, both 5% and 10% weight loss properties 

were improved when compared with the pure polyamideimide sample. The residue 

weight increased with increasing silica content, indicating a general increase of the 

thermal stability. The increase in residue weight in the hybrid films was believed 

mainly due to the formation of silica. However, it was noted that the residue weight 

gain of the hybrid films from TGA analysis was lower than the theoretical silica 

content. This could be due to the fact that some of un-reacted TEOS were lost through 

vaporisation during the drying and heating stage. Similar finding was also reported by 

Yang et al. [23]. 

The enhancing effect of silica on the thermal stability of hybrid materials is also 

confirmed by the increase of Tg. The pure polyamideimide exhibited a Tg value of 

194°C. With the introduction of silica, the Tg increased to 221°C when the silica 

content was 7 wt% and then to 234°C when the silica content was further increased to 

15 wt% (Table 2). This could be explained by the tightness of the hybrid films. The 

incorporation of silica into the polymer matrix decreases the flexibility of the polymer 

chain and hence increases the Tgs of the hybrid. 

Table 2: The thermal properties of hybrid films.  

Sample 5% weight loss 

temperature 

(°C)
 a
 

10% weight loss 

temperature (°C)
a
 

Residue 

(%)
b
 

Tg
 
(°C)

c 

Polyamideimide 244 290 9.2% 194 

Hybrid, 7 wt% SiO2 265 325 14.5% 221 

Hybrid, 15 wt% SiO2 261 323 20.4% 234 

a. Temperatures at which 5% or 10% weight loss were recorded by TGA. 

b. Residue weight (%) when heated to 800°C with TGA measurement. 

c. Measured at a heating rate of 10°C/min with DSC measurement 
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Morphology 

The surface morphology of the sulphonated polyamideimide/silica hybrid films was 

studied by SEM, with the results shown in Figure 9. It was found that the silica 

nanoparticles were well dispersed in the organic continuous phase. With the addition 

of APTrEOS (Figure 9-a), no silica particles greater than 50 nm or agglomeration 

could be observed in the SEM image. However, in the absence of APTrEOS (Figure 

9-b), the silica particles were found in the range of 400-600 nm and spherical. This 

indicates that addition of APTrEOS promotes the formation of the organic-inorganic 

structure with the nano inorganic particles inter-perpetrating the polymer matrix. 

To confirm the existence of silica in the hybrid film samples, energy dispersive X-ray 

spectrometry (EDS) experiments were also performed in SEM for two film samples 

with or without APTrEOS. For the sample with APTrEOS, EDAX analysis was 

conducted in a randomly selected area. In the case of the sample without APTrEOS, 

EDAX analysis was conducted on the observed particles. For both samples, a clear 

silicon signal was observed in the EDS spectra (Fig. 9), confirming the formation of 

silica. In addition, the Si signal does not dominate spectrum, indicating the silica has 

not phase separated from the surface of the film.  

 

a: with APTrEOS 

b: without APTrEOS 
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Figure 9: SEM images and EDS spectra of polyamideimide/silica hybrid film 

samples (all containing 7 wt% SiO2, a: with APTrEOS, b: without APTrEOS). 

The optical appearance is a convenient way to judge the dispersing status of the 

inorganic phase in the polymer matrix for polymeric/inorganic composites. 

Transparency of the composite is a good indication that the inorganic phase in a 

polymer matrix is dispersed at the nano-scale. The introduction of chemical bonding 

between the polyamideimide and silica is believed to improve their compatibility and 

consequently the optical properties. To illustrate this, two film samples with identical 

silica content (15 wt% SiO2) were prepared with or without APTrEOS bonding. It was 

observed the hybrid film sample with APTrEOS bonding appeared more transparent 

than the one without. This is because the coupling agent APTrEOS provided a link 

between the inorganic domains and the polymer matrix, and subsequently reduced the 

phase separation and led to smaller silica particles. Therefore, the sample appeared to 

be more transparent. The transparency feature of hybrid film sample provides 

additional evidence that the silica particles dispersed in the polymer matrix were at 

the nano-scale level.  

 

Conclusions 

In this work, a synthesis route for the fabrication of hybrid organic-inorganic 

materials based on sulphonated polyamideimide and silica via a sol-gel process was 

developed. A high molecular weight sulphonated polyamideimide synthesised via a 

two step process was used as the starting polymer and the silica was derived from two 

alkoxysilanes, APTrEOS and TEOS. The APTrEOS was found to provide bonding 

and improve the compatibility between the polyamideimide phase and the silica 

network. Highly homogeneous hybrid polyamideimide-silica films can be fabricated 

with well dispersed silica particles in the polymer matrix and chemical bonding 

between the organic and inorganic phases. The silica particles in the hybrid films were 

found to be less than 50 nm, resulting in improved optical properties of hybrid 

materials. The thermal stability and hydrophilic properties of hybrid materials were 

also improved with the incorporation of the silica nanoparticles.  
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