82 research outputs found

    Agroforestry with N2-fixing trees: sustainable development's friend or foe?

    Get PDF
    Legume tree-based farming systems sit at a crucial nexus of agroecological sustainability. Their capacity to support microbial N2 fixation can increase soil nitrogen (N) availability and therefore improve soil fertility, crop yields, and support long-term stewardship of natural resources. However, increasing N availability oftentimes catalyzes the release of N into the surrounding environment, in particular nitrous oxide (N2O)—a potent greenhouse gas. We summarize current knowledge on the agroecological footprint of legume-based agroforestry and provide a first appraisal of whether the technology represents a pathway toward sustainable development or an environmental hazard

    Towards a collaborative research: A case study on linking science to farmers' perceptions and knowledge on Arabica coffee pests and diseases and its management

    Get PDF
    The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed. (Résumé d'auteur

    Climate Change Challenge (3C) and Social-Economic-Ecological Interface-Building—Exploring Potential Adaptation Strategies for Bio-resource Conservation and Livelihood Development: Epilogue

    Get PDF
    Climate change is arguably the single most dominant environmental threat facing humanity. Its manifestations, particularly through rising temperatures, changing rainfall, sea-level rise and increasing droughts and floods have the potential to adversely impact natural ecosystems (such as forests, grasslands, rivers and oceans) and socioeconomic systems (such as food production, fisheries and coastal settlements). This is adding additional stresses to the ecosystem services which form a substantial source of income to the rural inhabitants. It is most proximate and inextricably linked to well-being, development and economic growth which are part of the eight Millennium Development Goals (MDGs), which ran from 2000 to 2015

    A Participatory Approach to Assessing the Climate-Smartness of Agricultural Interventions: The Lushoto Case

    Get PDF
    The concept of climate-smart agriculture (CSA) is gaining momentum across the globe. However, it is not specific on what should be covered under its three pillars—productivity, resilience and mitigation. Consequently, CSA encompasses many different agricultural practices/technologies, making it difficult to prioritise CSA objectives. Firstly, there is a lack of clear and workable criteria as well as methods for assessing the climate-smartness of interventions. Secondly, little information exists about the impact of the various interventions already promoted as CSA, especially in the developing world. Finally, CSA prioritisation does not take into account stakeholders’ perspectives to ensure that the interventions are applicable, suitable and of high adoption-potential. Here, we describe a new participatory protocol for assessing the climate-smartness of agricultural interventions in smallholder practices. This identifies farm-level indicators (and indices) for the food security and adaptation pillars of CSA. It also supports the participatory scoring of indicators, enabling baseline and future assessments of climate-smartness to be made. The protocol was tested among 72 farmers implementing a variety of CSA interventions in the climate-smart village of Lushoto, Tanzania. Farmers especially valued interventions that improved soil fertility and structure, reduced surface runoff, and reclaimed degraded land due to the positive impacts on yield and off-season crop agriculture. Mostly, the CSA interventions increased animal production, food production, consumption and income. The protocol is easy to adapt to different regions and farming systems and allows for the better prioritisation of interventions. But we recommend that CSA is adopted as part of a monitoring, evaluation and learning process

    Cooperative management and its effects on shade tree diversity, soil properties and ecosystem services of coffee plantations in western El Salvador

    Full text link
    We compared how management approaches affected shade tree diversity, soil properties, and provisioning and carbon sequestration ecosystem services in three shade coffee cooperatives. Collectively managed cooperatives utilized less diverse shade, and pruned coffee and shade trees more intensively, than individual farms. Soil properties showed significant differences among the cooperatives, with the following properties contributing to differentiation: N, pH, P, K, and Ca. Higher tree richness was associated with higher soil pH, CEC, Ca, and Mg, and lower K. Higher tree densities were associated with lower N, K, and organic matter. Although we found differences in the incidence of provisioning services (e.g., fruit), all plantations generated products other than coffee. No differences were observed between C-stocks. The history and institutional arrangements of cooperatives can influence management approaches, which affect ecosystem properties and services. Our study corroborates that interdisciplinary investigations are essential to understand the socio-ecological context of tropical shade coffee landscapes
    • …
    corecore