2,630 research outputs found

    A bicentennial agenda for America

    Get PDF
    A commencement address is presented. Topics reviewed include politics, technological developments in science as a whole, and the effects of science on human progress. The social ramifications of satellite technology are also reviewed

    Magic angle effects in the interlayer magnetoresistance of quasi-one-dimensional metals due to interchain incoherence

    Get PDF
    The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modelled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.Comment: 7 pages, 3 figures, Submitted To Phys. Rev.

    Theoretical analysis of various thrust-augmentation cycles for turbojet engines

    Get PDF
    The results of analytical studies of tail-pipe-burning, water-injection, and bleedoff methods of thrust augmentation are presented that provide an insight into the operating characteristics of these augmentation methods and summarizes the performance that may be obtained when applied to a typical turbojet engine. A brief description of the principles of operation of each augmentation method is given, together with curves that illustrate the effects of the principal design and operating variables of the augmentation system on the thrust and the liquid consumption of the engine. The necessity of designing tail-pipe burners with a low burner-inlet velocity, a low burner drag, and a high diffuser efficiency in order to obtain a high thrust augmentation and to minimize the loss in engine performance during nonburning operation is illustrated

    Poisson equation and self-consistent periodical Anderson model

    Full text link
    We show that the formally exact expression for the free energy (with a non-relativistic Hamiltonian) for the correlated metal generates the Poisson equation within the saddle-point approximation for the electric potential, where the charge density automatically includes correlations. In this approximation the problem is reduced to the self-consistent periodical Anderson model (SCPAM). The parameter of the mixing interaction in this formulation have to be found self-consistently together with the correlated charge density. The factors, calculated by Irkhin, for the mixing interaction, which reflect the structure of the many-electron states of the \f-ion involved, arise automatically in this formulation and are quite sensitive to the specific element we are interested in. We also discuss the definitions of the mixing interaction for the mapping from ab initio to model calculations.Comment: 25 pages, no figure

    Correlation of cylinder-head temperatures and coolant heat rejections of a multicylinder, liquid-cooled engine of 1710-cubic-inch displacement

    Get PDF
    Data obtained from an extensive investigation of the cooling characteristics of four multicylinder, liquid-cooled engines have been analyzed and a correlation of both the cylinder-head temperatures and the coolant heat rejections with the primary engine and coolant variables was obtained. The method of correlation was previously developed by the NACA from an analysis of the cooling processes involved in a liquid-cooled-engine cylinder and is based on the theory of nonboiling, forced-convection heat transfer. The data correlated included engine power outputs from 275 to 1860 brake horsepower; coolant flows from 50 to 320 gallons per minute; coolants varying in composition from 100 percent water to 97 percent ethylene glycol and 3 percent water; and ranges of engine speed, manifold pressure, carburetor-air temperature, fuel-air ratio, exhaust-gas pressure, ignition timing, and coolant temperature. The effect on engine cooling of scale formation on the coolant passages of the engine and of boiling of the coolant under various operating conditions is also discussed
    • …
    corecore