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The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic
field show dips when the field is tilted at the so-called magic angles determined by the structural dimensions
of the materials. There is currently no accepted explanation for these magic-angle effects. We present a possible
explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting
direction has a small contribution from incoherent electrons. This incoherence is modeled by a small uncer-
tainty in momentum perpendicular to the most conducting(chain) direction. Our model predicts the magic
angles seen in interlayer transport measurements for different orientations of the field. We compare our results
to predictions by other models and to experiment.
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I. INTRODUCTION

There is a fundamental relation between quantum coher-
ence of excitations properties and transport properties in
strongly correlated metals.1–5 Scattering of electrons affects
the transport, but also blurs information about the momen-
tum of the electron, and therefore changes the coherence of
the electrons, or quasiparticle excitations. Generally, the ef-
fect of strong electronic correlations and incoherent excita-
tions are enhanced in systems of reduced dimensionality.
A striking example of this are Luttinger liquids in one
dimension. The quasi-one-dimensional Bechgaard salts
sTMTSTd2X sX=PF6,ClO4,NO3, . . . ,d show a rich phase
diagram ranging from field induced spin density waves to
insulators and superconductors, depending on pressure and
anion.6,7 The structures are highly anisotropic, and show in-
teresting features as a magnetic field is applied. Recently, in
some quasi-two-dimensional organic metals definitive
signatures8 of coherent interlayer transport have been
seen.9,10

Lebed11 predicted that resistance maxima would occur
when orbits along directions in the crystal are commensurate
with the applied field at the so-called “magic angles”(MA )
where tanu= lb /c, whereu is the angle between the mag-
netic field, tilted in thesy,zd plane, and the least conducting
direction,z, b, andc are lattice constants, andl is an integer.
The MA were later discovered,12 but not as maxima but as
dips in the angular dependence of the magnetoresistance.
MA effects are also seen13 in the sDMET-TSeFd2X family
where X=AuCl2, AuI2. The theory was later modified to
explain why dips should be found.14 The idea presented is
that periodic motion is induced at the MA and, provided
there is even a small overlap in the direction of the applied
field, the electron-electron interaction becomes more two di-
mensional which would produce a dip in the magnetoresis-
tance(MR) at the MA. Alternative ideas and explanations
have since then appeared in the literature.15–21Most of them
are based on a small overlap of electronic wave functions in
the direction of the magnetic field, but suggestions based on
a Luttinger liquid approach have also been made.22,23 The

theory developed by Osada, Kagoshima, and Miura15 cap-
tures many details of the experimental data.24 However, that
theory requires the existence of very long-range hopping(for
example, the second nearest-neighbor hopping integral in a
tight-binding model is of the same order of magnitude as the
next-nearest neighbor integral). Further, ifBx=0, x being the
most conducting direction, i.e., along the one-dimensional
chain of molecules, the theory predicts that there would be
no MA seen in the interlayer conductivityszz. Further, it
does not explain the dip in the MR when the magnetic field
lies in the planesu=90°d. The data for in-plane magnetic
field is affected by the fact that the sample is superconduct-
ing and the upper critical field Hc2 for an in-plane magnetic
field is quite large.25 The consensus is that there is no ac-
cepted theory behind the appearance of the MA. The experi-
mental situation is also unclear at the moment. Some groups
report that the MR has the same behavior in all directions of
the current.24,26,27Whereas other experiments disagree,28 and
claim that, due to defects in the crystals, the electrons are
forced to travel in one direction past the defects, so that there
can be a contribution from, e.g., the resistivity in thex direc-
tion to the resistivity in thez direction, producing an appar-
ently similar angular behaviour ofrxx andrzz.

The MA effects are also seen in torque measurements, as
measured by Naughtonet al.12 This has been discussed theo-
retically by Yakovenko.29 Since the torque can be related to
the free energy, it is likely that MA effects reflects the ground
state electronic properties of the material. Further, a big
Nernst signal has been detected at the MA,30 and has been
discussed theoretically.31

The crystal is oriented so thatx is the most conducting
direction, followed by they direction. Thesx,yd plane de-
fines the layered structure. Typically, the hopping in the three
different directions are estimated to be of the order7,32

tx: ty: tz,2000 K:200 K:10 K.
Here we present an alternative explanation of the occur-

rence of the MA. Our physical picture is the following. The
strongly anisotropic structure of the material affects the co-
herence of the particles in the crystal, as well as increasing
the effect of the electron correlations33,34In a previous paper,
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we discussed a model for transport in layered materials based
on a coherence-incoherence crossover as a function of
temperature.4 Along thex direction the motion is assumed to
be coherent. The least conductingz direction is assumed to
be incoherent, and in they direction, the motion is predomi-
nantly coherent, but with a small incoherent contribution. We
will show that the loss of coherence in they direction is
directly responsible for the MA in the conductivity measured
along thez direction. Even a small amount of incoherence
gives rise to a sizable effect seen at the MA.

II. MODEL

We model the system as a quasi-one-dimensional metal.
We introduce coordinates such thata is the lattice spacing in
the x̂ direction,b in the ŷ, andc in the ẑ, the layers lie in the
sx,yd plane. Due to the layered structure, the Hamiltonian is
divided into intralayer and interlayer contributions

H = Hi + H', s1d

where Hi describes the two-dimensional(2D) sx,yd layer
and includes all many-body interactions within each layer,
andH'= t'oki,jlsci

†cj +h.c.d describes the tunneling between
nearest neighbors in thez direction. Because of the layered
crystal structure, we assume that Coulomb correlations be-
tween the layers are small, and the separation is valid. Later,
we will further specifyHi for quasi-one-dimensional sys-
tems. If we have a magnetic field in thesy,zd plane the

vector potential AW for the magnetic fieldBW =s0,By,Bzd
=s0,B sinu ,B cosud. In the Landau gaugeAW is

AW = szBy,xBz,0d.

We are going to study transport in thez direction, i.e., trans-
port between the anisotropic two-dimensional layers. Let us
consider two adjacent layers. The vector potential in the two
layers are not equal but differ by a gauge transformation

AW 2=AW 1+¹W L, 1 and 2 indicate the layer, andL=cByx. At
small bias we can use linear response theory to calculate the
current between the layers. At low temperatures, only elec-
trons at the Fermienergy contribute to the conductivity in the
least conducting direction, and it can be written as a function
of only the in-plane Green’s function8 due to the separation
of intralayer and interlayer contributions in the Hamiltonian.
Separating the current-current correlation function we get
that the conductivity is given by8

szz=
e2t'

2 c

"pLxLy
E dr E dr 8fG1+sr ,r 8,EFdG2−sr 8,r ,EFd

+ G1−sr 8,r ,EFdG2+sr ,r 8,EFdg, s2d

whereG1+sr ,r 8 ,EFd denotes the electronic Green’s function
(GF) within a single layer. Here,LxLy are the dimensions of
the sample in thex, andy direction respectively. There is an
indirect dependence on the distance between the layers int'.
We stress that this is a very general expression and contains
all the many-body effects within each layer.

A. Noninteracting Green’s function for quasi-one-dimensional
materials in a magnetic field

Let us now look at the Hamiltonian in the absence of
electron-electron interactions. We assume that the spectra
in the most conducting direction can be linearized. Then,
the Hamiltonian for a layer in a tilted magnetic field is
(see Ref. 8)

Hi
0 = avFs− i"]x + ezBsinud

− 2ty cosfbs− i"]y − exBcosudg, s3d

wherea= ±1 denotes which sheet of the Fermi surface the
electron is on.vF is the Fermi velocity, andty is the inter-
chain hopping-integral. The wave function is written as

csx,y,td = expHiF− et

"
+ kxx + kyy − al sinskyb − qxdGJ ,

s4d

where

q =
ebBcosu

"
=

vB

vF
=

v0 cosu

vF
. s5d

vB is the frequency at which electrons traverse the quasi-
one-dimensional sheets of the Fermi surface7 and

l =
2ty

ebvFB cosu
s6d

is the wavelength of the real space oscillations of the electron
trajectories on the Fermi surface.7 In a magnetic field the
electron dispersion relation isindependentof ty,

easkx,kyd = a"kxvF. s7d

All energies are relative to the Fermi energy. The GF can be
calculated in a way similar to the one in Ref. 8, to give

G0
1+sr ,r 8,Ed = −

iLx

"vF
o
ky,a

aeifkysy−y8d+alLgei ux−x8u/"vFsE+iGd,

s8d

where

L = sinskyb − qx8d − sinskyb − qxd,

andG is the electron scattering rate. The GF for the second
layer differs by a gauge factor,eie/" Lsr−r8d and is

G0
2+sr ,r 8,Ed = −

iLx

"vF
o
ky,a

aeifkysy−y8d+alLg

3 ei ux−x8u/"vFsE+evFcB sin u+iGd. s9d

B. Green’s function containing incoherence

We now allow for the possibility that the motion in the
interchain direction can be incoherent. The incoherence
might come from polaron formation, strong electron-electron
correlation, or any other many-body effect. In a formulation
in terms of GFs a possible ansatz for the effect of incoher-
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ence is that the noninteracting GF is multiplied by a
y-dependent factor

Gsr ,r 8,td = G0sr ,r 8,tdssy − y8d, s10d

wheressy−y8d depends on the process by which coherence
is lost. The validity of this special form of GF can be seen for
polarons in, e.g., Refs. 4, 35, and 36, and for electron-
electron interaction, in, e.g., Ref. 1 In a 2D strongly corre-
lated model using the slave-boson approach1 the electronic
GF factorizes intoG=GBGF, whereGF is the free Fermion
GF, and GBsr ,r 8d=exps−ur −r 8u2/mBTd is the bosonic GF
containing the correlations,mB is the mass of the accompa-
nying boson, andT the temperature. If the 2D lattice is an-
isotropic (i.e., weakly coupled chains) the effect from the
bosonic part will be even more pronounced. In a previous
paper we studied transport in layered materials of polarons.4

For this case the GF contains two parts, one coherent, de-
scribing band motion of electrons weakly scattered by the
phonons, and one incoherent, where localized polarons hop
between sites. For the case of polarons Eq.(10) is valid.4,36

Here, we do not specify the process responsible for the loss
of coherence, but will just assume the general form given in
Eq. (10). The process involved in Eq.(10) is the following.
When the electron moves in thesx,yd layer thekx momen-
tum is conserved. Hence, there is nox dependence in the
term describing the incoherent contribution,ssy−y8d. In-
stead it describes the change in momentum in they direction
as the particle jumps betweeny and y8. The change in mo-
mentum isdky, which will be centered around zero so that
for most of the timeky is unchanged. If the proposed form
for the GF is correct, it could be visible in angle resolved
photoemission spectra, which measures the spectral
density.3,37,38 Later we will demonstrate that even a very
small incoherent term gives rise to observable MA effects.

C. Interlayer conductivity

Using the GFs, Eqs.(8) and (9) in Eq. (2), and the inco-
herence factorssy−y8d we get a general expression for the
conductivity

szz=
e2t'

2 c

"pLxLy
E dr E dr 8 o

a,ky,ky8

eifsky−ky8dsy−y8d+alsL+L8dg

3 ussy − y8du2e−2ux−x8u/"vFGseiS + e−iSd, s11d

whereS=ecBsinu /" ux−x8u is the change in gauge potential
associated with interlayer transport. The summation overa,
the two Fermi sheets the electrons moves on, can be done
and simplified. This can be simplified to

1

2o
a

eialsL+L8d = 2 cosh4l sinfsky − ky8db/2g

3cosfsky + ky8db/2gj

3 cosh4l sinfsky − ky8db/2g

3cosfsky + ky8db/2 − q/2sx − x8dgj

+ 2 sinh4l sinfsky − ky8db/2g

3cosfsky + ky8db/2gj

3 sinh4l sinfsky − ky8db/2g

3cosfsky + ky8db/2 − q/2sx − x8dgj.

Here, we introduce new variables,ky−ky8=k−, ky+ky8=k+,
x−x8=x−, x+x8=x+, y−y8=y−, and y+y8=y+. We can then
perform the integral overx+ to giveLx, and the integral over
y+ to give Ly. We now use the representation of the trigono-
metric functions in terms of Bessel functions

cosfA cossk+b/2 − Ddg

= J0fAg + 2o
k=1

`

s− 1dkJ2kfAgcosf2ksk+b/2 − Ddg,

sinfA cossk+b/2 − Ddg = 2o
k=0

`

s− 1dkJ2k+1fAgcosfs2k + 1d

3sk+b/2 − Ddg,

whereJl is a Bessel function of orderl. The summation over
k+ can now be done by transforming it into an integral and
we get

szz=
4e2t'

2 c

"b
E dk−E dx−e−ux−u/"vFG cosSecBsinu

"
ux−uD

3 o
l=0

`

JlF4l sinSk−b

2
DG2

cosslqx−dfsk−d, s12d

where we introduced the distribution function

fsk−d =E dy−eiy−k−ussy−du2, s13d

describing the spread(incoherence) in the (interchain) y di-
rection. The final step is the integration inx−, which gives us
the final expression

szzsud = s0 o
l=−`

`
G2

G2 + e2vF
2B2sbl cosu − c sinud2

3E dk−JlF4l sinSk−b

2
DG2

fsk−d, s14d

where we defined the conductivity in zero field,s0
;8t'

2 e2c/vFbG. Equation(14) is the main result of this pa-
per. This expression can be directly compared with those
derived by other authors for alternate theories.16,17 The MA
appears as peaks inszz (dips in the MR), when the denomi-
nator has a minima. This will occur at angles when

tanu =
b

c
l , s15d

i.e., at the MA.
Recall that the functionfsk−d indicates the amount of in-

coherence in they direction. If we have coherent particles in
the y direction, then,ky is always conserved so thatky8=ky,
and the distribution will be a delta functionfsk−d=dsk−d. The
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sum over the Bessel functions collapses to only thel =0 term,
and the result is

szzsB,ud = s0
G2

G2 + secvFB sinud2 . s16d

This agrees with the result from regular Boltzmann transport
theory,39 and the MA effects are not seen.

If an incoherent term is present we will have some spread

in k−. To illustrate this we usefsk−d=1/Î2pk0e
−sk−d2/2k0

2
,

meaning that the averaged momentum in they direction fol-
low

ksky − ky8d
2l = k0

2. s17d

fsk−d has the property that it becomes a delta function ifk0

→0, i.e., when the quasi-particles in they direction are co-
herent. The momentum in thex direction is conserved,kx8
=kx. We stress that the effects we are discussing are not
sensitive to the particular form offsk−d used, since it is an
integrated quantity.k0b is a measure of how poorly the qua-
siparticle wave vector is defined in the interchain direction.
The electrons are coherent in they direction of the order of
k0

−1, meaning that if, say,k0b=0.01, then the electrons are
coherent on the order of 100 lattice constants in they direc-
tion. Thus, a value used belowk0b=0.01 still represents very
well-defined quasiparticles. A typical curve for the angular
dependence of the interalyer magnetoresistance is shown in
Fig. 1. The value of the other parametersv0/ ty andv0/G are
taken from typical experimental values. The decay,G=" /t,

comes from two experiments where the scattering time has
been measured by magnetoresistance measurements and
is t=4.3 ps in Ref. 40[sTMTSFd2ClO4 at T=0.5 K and am-
bient pressure] giving G=0.15 meV, andt=6.3 ps in Ref. 41
[sTMTSFd2PF6 at T=0.32 K and 8.2 kbar] giving G
=0.10 meV. The magnetic frequencyv0=ebvFB is given by
the Fermi velocityvF=0.2 Mm/s in Ref. 15, and is equal to
1.08 meV when the magnetic field 7 T andb=7.711 Å.40

The hopping parameter in they direction, ty is given as
31 meV in Ref. 41 and Ref. 15, but 12 meV in Ref. 40. In
our numerical examples we usev0/G=10, v0/ ty=0.1. The
results are not that strongly dependent on the choice of these
values, only the amplitude of the MA dips change. Here we
have to point out that according to the experiments40 there
should be a dip whenu=90°, which is absent in our theory
(see Fig. 1). This dip occurs whenB is parallel to the layers,
and is therefore not a MA, and cannot be described by our
theory. As described in the introduction, it may be connected
with the proximity to the superconducting state for the in-
plane magnetic field.25

Note that by comparing our theory to the one by Osada17

(which assumes noninteracting electrons) the incoherent
term in they direction has a similar effect as a magnetic field
in the x direction. In particular we have

Bx ↔ "k0

ec
, s18d

giving Bx,6.3 T if we usek0b=0.01. We see that even a
very small incoherent part,k0b=0.01, corresponds to a rela-
tively large fluctuating field in thex-direction Bx,6.3 T.
Thus, the larger the incoherence is(largerk0b) the larger the
corresponding effective field in thex direction, and the larger
the MA dips in the MR. This is consistent with the experi-
mental result by Lee and Naughton,41 where an increasingx
component of the magnetic field increased the size of the
MR oscillations at the MA.

III. B¢ IN THE „x ,z… PLANE

If we instead apply the magnetic field in thesx,zd plane
the vector potential will be

AW = s0,xBz − zBx,0d.

The derivation is very similar to the one presented above
with the only difference that the gauge potential does not
have any component depending onux−x8u, but now depends
on y−y8 instead. The result is that the integral overx− is
simpler, but the integral overy− has an additional factor. This
factor can be absorbed in they− integral, the final result is

szzsB,ud = s0 o
l=−`

` E dk−JlF4l sinSk−b

2
DG2

3
G2

G2 + sevFblBzd2gsk−d, s19d

where

FIG. 1. Interlayer magnetoresistance as a function of tilt angleu
in they-z plane. Even for a very small incoherent hopping between
the chains of molecules the magic-angle effect is clearly seen. The
parameterk0b is a dimensionless parameter describing spread in the
distribution of momentum as the particle tunnels between the
chains.k0b=0 means full coherence, i.e., a delta-function distribu-
tion of ky values. The magnetic frequencyv0=ebvFB is the fre-
quency at which the electrons traverse the open sheets of the Fermi
surface.r0 is the resistivity in zero field, we usedb=c and v0/G
=10. We also included, as a comparison, the result when no inco-
herence is presentsk0b=0d, given by Eq.(16) in the text.
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gsk−d =E dy−eiy−sk−−ecBx/"dussy−du2 = fSk− −
ecBx

"
D .

s20d

The parameterl is 2ty/ebvFBz. The so-called Danner-Kang-
Chaikin oscillations40 are observed provided that

ecBx

"
@ k0, s21d

wherek0b is the incoherence parameter. In Fig. 2 we com-
pare the resulting resistivitys1/szzd from Eq. (19) with an
experimental curve.40 We did not adapt the parameters to the
experiment, but just want to illustrate that this type of oscil-
lations do appear in the theory presented. Note that we have
used a smaller value for the incoherence parameterk0b
=0.001, compared to the value used in Fig. 1. This is justi-
fied by the fact that the experiment we compare with is per-
formed for the ClO4 compound and the oscillations in they
-z plane are not as visible12 as for the PF6 compound indi-
cating a smaller incoherence factor.

FIG. 3. Interlayer magnetoresistivity versusy-z plane angle,a,
defined via tana=sinf / tanu (see top figure). The middle panel
shows the result from our numerical calculation of conductivity
using Eq.(22). Modulations appear at the magic angles as the angle
a is increased. We usedb=7.581 Å andc=13.264 Å. The other
parameters used arek0b=0.1, v0/G=10 andv0/ ty=0.1. The theo-
retical curve can be compared with Fig. 4 from Ref. 41 shown in
the lower panel. This is an experiment done at 0.32 K on
sTMTSFd2PF6 with an applied hydrostatic pressure of 8.3 kbar to
suppress the spin-density-wave state.

FIG. 2. Interlayer magnetoresistance as a function of the mag-
netic field direction in thex-z plane.u is the angle between the field
and thez axis. The upper panel shows a numerical calculation of the
so-called Danner-Kang-Chaikin oscillations,40 from Eq. (19) in the
text. The theoretical curve can be compared with Fig. 1 from Ref.
40 shown in the lower panel, with experiments done on
sTMTSFd2ClO4 at ambient pressure andT=0.5 K. The dip around
zero degree below 3 T is due to the sample becoming supercon-
ducting. Note thatu denotes the angle between the magnetic field
and the x axis. We usedb=c, k0b=0.001, with v0/G=10 and
v0/ ty=0.1 atB=7 T.
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IV. B¢ IN THE „x ,y,z… PLANE

Combining the results from the calculations above we can
get an expression for a field in a general direction,
sBx,By,Bzd. We get

szzsu,fd = s0 o
l=−`

`
G

G2 + e2vF
2sblBz − cByd2

3E dk−JlF4l sinSk−b

2
DG2

fSk− −
ecBx

"
D ,

s22d

note thatl is a function ofBz. In Fig. 3 we compare results
from this expression with the experimental results of Lee and
Naughton,41 by identifying the angles defined in Fig. 3, as
follows:

5Bx = B cosu cosf

By = B cosu sinf

Bz = B sinu
6 , s23d

where the definition ofu and f follows Ref. 41, (see the
upper panel in Fig. 3) As the angleu between thesx,yd plane
and the direction of the field is increased, the oscillations
start to appear. The similarities to Fig. 4 in Ref. 41 are strik-
ing. Changing the parameters in the model does not change
the general features of this plot.

V. DISCUSSION

In summary we have presented an explanation in terms of
many-body effects of the appearance of magic angle effects
in the interlayer magnetoresistance. The MA appears natu-
rally from, even a small, incoherent contribution to the inter-
chain hopping. The hopping in the most conducting direction
is assumed to be coherent, and in the least conducting direc-
tion incoherent. Momentum can change in the direction be-
tween the one-dimensional chain of molecules. This is de-
scribed by a distribution function which is centered around
zero, letting most quasiparticles retain their momentum when
hopping. We used an explicit form of the interlayer Green’s
function, which can be directly observed in a angle resolved
photoemission spectra. Unlike previous explanations,15,24,39

the theory does not assume any long distance hopping be-
tween nonadjacent quasi-one-dimensional molecules in dif-
ferent layers, where the overlap is quite small, only a nearest-
neighbor interlayer overlap. The shape of the Fermi surface
is not affected by the incoherence. Numerical calculations
produce results similar to experimental results.
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