109 research outputs found

    Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions

    Get PDF
    In our present work, magnetic cobalt ferrite (CoFe2O4) nanoparticles have been successfully synthesised by thermal decomposition of Fe(III) and Co(II) acetylacetonate compounds in organic solvents in the presence of oleic acid (OA)/ oleylamine (OLA) as surfactants and 1,2-hexadecanediol (HDD) or octadecanol (OCD-ol) as an accelerating agent. As a result, CoFe2O4 nanoparticles of different shapes were tightly controlled in size (range of 4–30 nm) and monodispersity (standard deviation only at ca. 5%). Experimental parameters, such as reaction time, temperature, surfactant concentration, solvent, precursor ratio, and accelerating agent, in particular, the role of HDD, OCD-ol, and OA/OLA have been intensively investigated in detail to discover the best conditions for the synthesis of the above magnetic nanoparticles. The obtained nanoparticles have been successfully applied for producing oriented carbon nanotubes (CNTs), and they have potential to be used in biomedical applications

    High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles

    Get PDF
    High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g−1. The magnetisation value of the core/shell nanoparticles remains 93 emu g−1 after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11

    TGF-β-driven reduction of cytoglobin leads to oxidative DNA damage in stellate cells during non-alcoholic steatohepatitis

    Get PDF
    BACKGROUND: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. Although CYGB is expressed uniquely in hepatic stellate cells (HSCs) in the liver, the molecular role of CYGB in human HSC activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which TGF-β1/SMAD2 pathway regulates human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS: Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analysis were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2’-deoxyguanosine (8-OHdG) ELISA. RESULTS: In culture, TGF-β1-pretreated human hepatic stellate cells (HHSteCs) exhibited lowered CYGB levels together with increased NADPH oxidase 4 (NOX4) expression and were primed for H_{2}O_{2}-triggered OH production and 8-OHdG generation. Overexpression of human CYGB in HHSteCs cancelled out those effects of TGF-β1. Electron spin resonance demonstrated direct •OH-scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2–{+}^13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-β1/SMAD3 mediated αSMA and collagen expression. Consistent with those observations in cultured HHSteCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA^{+}pSMAD2^{+}- and αSMA^{+}NOX4^{+}-positive hepatic stellate cells from human NASH patients with advanced fibrosis. CONCLUSIONS: Downregulation of CYGB by the TGF-β1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from human patients with NASH

    Three phylogenetic groups have driven the recent population expansion of Cryptococcus neoformans.

    Get PDF
    Cryptococcus neoformans (C. neoformans var. grubii) is an environmentally acquired pathogen causing 181,000 HIV-associated deaths each year. We sequenced 699 isolates, primarily C. neoformans from HIV-infected patients, from 5 countries in Asia and Africa. The phylogeny of C. neoformans reveals a recent exponential population expansion, consistent with the increase in the number of susceptible hosts. In our study population, this expansion has been driven by three sub-clades of the C. neoformans VNIa lineage; VNIa-4, VNIa-5 and VNIa-93. These three sub-clades account for 91% of clinical isolates sequenced in our study. Combining the genome data with clinical information, we find that the VNIa-93 sub-clade, the most common sub-clade in Uganda and Malawi, was associated with better outcomes than VNIa-4 and VNIa-5, which predominate in Southeast Asia. This study lays the foundation for further work investigating the dominance of VNIa-4, VNIa-5 and VNIa-93 and the association between lineage and clinical phenotype

    Physical growth during the first year of life. A longitudinal study in rural and urban areas of Hanoi, Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Good infant growth is important for future health. Assessing growth is common in pediatric care all over the world, both at the population and individual level. There are few studies of birth weight and growth studies comparing urban and rural communities in Vietnam. The first aim is to describe and compare the birth weight distributions and physical growth (weight and length) of children during their first year in one rural and one urban area of Hanoi Vietnam. The second aim is to study associations between the anthropometric outcomes and indicators of the economic and educational situations.</p> <p>Methods</p> <p>Totally 1,466 children, born from 1<sup>st </sup>March, 2009 to June 2010, were followed monthly from birth to 12 months of age in two Health and Demographic Surveillance Sites; one rural and one urban. In all, 14,199 measurements each of weight and length were made. Birth weight was recorded separately. Information about demographic conditions, education, occupation and economic conditions of persons and households was obtained from household surveys. Fractional Polynomial models and standard statistical methods were used for description and analysis.</p> <p>Results</p> <p>Urban infants have higher birth weight and gain weight faster than rural infants. The mean birth weight for urban boys and girls were 3,298 grams and 3,203 grams as compared to 3,105 grams and 3,057 grams for rural children. At 90 days, the urban boys were estimated to be 4.1% heavier than rural boys. This difference increased to 7.2% at 360 days. The corresponding difference for girls was 3.4% and 10.5%. The differences for length were comparatively smaller. Both birth weight and growth were statistically significantly and positively associated with economic conditions and mother education.</p> <p>Conclusion</p> <p>Birth weight was lower and the growth, weight and length, considerably slower in the rural area, for boys as well as for girls. The results support the hypothesis that the rather drastic differences in maternal education and economic conditions lead to poor nutrition for mothers and children in turn causing inferior birth weight and growth.</p

    Marginal Level Dystrophin Expression Improves Clinical Outcome in a Strain of Dystrophin/Utrophin Double Knockout Mice

    Get PDF
    Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx) mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD) patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv) mice express a near-full length dystrophin protein at ∟5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies

    In silico-designed lignin peroxidase from Phanerochaete chrysosporium shows enhanced acid stability for depolymerization of lignin

    Get PDF
    Background: The lignin peroxidase isozyme H8 from the white-rot fungus Phanerochaete chrysosporium (LiPH8) demonstrates a high redox potential and can efficiently catalyze the oxidation of veratryl alcohol, as well as the degradation of recalcitrant lignin. However, native LiPH8 is unstable under acidic pH conditions. This characteristic is a barrier to lignin depolymerization, as repolymerization of phenolic products occurs simultaneously at neutral pH. Because repolymerization of phenolics is repressed at acidic pH, a highly acid-stable LiPH8 could accelerate the selective depolymerization of recalcitrant lignin. Results: The engineered LiPH8 was in silico designed through the structural superimposition of surface-active site-harboring LiPH8 from Phanerochaete chrysosporium and acid-stable manganese peroxidase isozyme 6 (MnP6) from Ceriporiopsis subvermispora. Effective salt bridges were probed by molecular dynamics simulation and changes to Gibbs free energy following mutagenesis were predicted, suggesting promising variants with higher stability under extremely acidic conditions. The rationally designed variant, A55R/N156E-H239E, demonstrated a 12.5-fold increased half-life under extremely acidic conditions, 9.9-fold increased catalytic efficiency toward veratryl alcohol, and a 7.8-fold enhanced lignin model dimer conversion efficiency compared to those of native LiPH8. Furthermore, the two constructed salt bridges in the variant A55R/N156E-H239E were experimentally confirmed to be identical to the intentionally designed LiPH8 variant using X-ray crystallography (PDB ID: 6A6Q). Conclusion: Introduction of strong ionic salt bridges based on computational design resulted in a LiPH8 variant with markedly improved stability, as well as higher activity under acidic pH conditions. Thus, LiPH8, showing high acid stability, will be a crucial player in biomass valorization using selective depolymerization of lignin
    • …
    corecore