313 research outputs found

    Exploring the Retargeting Strategy of Telepresence

    Get PDF
    Retargeting is based on the “Rule of Seven”, which is an old theory coined by Dr. Jeffrey Lant and states that a customer must to be touched 7 times before becoming aware of a product or service and take action. Thus, it is critical to increase consumer touch points through Retargeting to drive potential sales. Therefore, this study strives to explore the remarketing strategies of virtual reality (VR) retargeting campaigns in accordance with telepresence theory for the tourism industry. VR telepresence is proposed as a formative second-order construct driven by reality judgement, internal/external correspondence, and attention/abortion. We further found that consumers’ experiences with VR retargeting campaigns were classified as either positive or negative effects on their sense of immersion to enhance consumer purchase intention. Finally, it hopes to provide more insights on VR design strategies of experiential marketing for the tourism industry. Based on a survey by Statista (2017), 96% of internet users in the U.S. would leave an online shopping website without making a purchase, suggesting that very few people would actually buy something during their first visit to a site, even if they have the intention to do so. Another study by OmniVirt (2018), based on over 700 million ads served, found that in a promotional campaign that was displayed 700 million times, 85% of internet users are willing to finish watching a 360-degree video, compared to 58% for its 2D video counterpart. In order to produce advertisements that attract a wider audience and boost sales, more and more brands are turning to immersive experiences. Compared to traditional ad campaigns featuring similar elements and positioning, immersive advertising can lead to higher click through rates, which in turn increases brand awareness (Parikh, 2019). With a view to enhancing consumers’ experience with retargeting marketing campaigns, the present study addresses how precision and immersive experiential marketing targeted at potential customers can increase their motivation to purchase. Based on Marvin Minsky’s (1980) theory of telepresence, three virtual reality (VR) scenarios featuring life-like images and audios are designed and stimulated by a computing device in a high-fidelity stereoscopic virtual 3D space, creating an immersive user experience. Through this immersive virtual experience (Lanier, 1988), the author examines consumers’ emotional states evoked by the virtual environment, which serves as the basis for further discussion on the effectiveness of VR retargeting travel ads. Research methods employed in this study to measure participants’ positive and negative emotions include administering a written questionnaire and monitoring their brainwave activities. In sum, the main objective of the present study is to explore the impacts of telepresence as well as the quality of retargeting on consumer purchase behavior. The expected contributions of this study are threefold: (1) addressing the quality of retargeting advertising (which has yet to be thoroughly explored in the past) in order to formulate a better understanding of the interaction between advertising quality and consumer behavior; (2) incorporating telepresence as part of consumer experience has a positive impact on retargeting advertising, encouraging potential buyers to take action; and (3) brain wave analysis can offer insights into participant’ positive and negative emotions, which improves the validity of this study. In conclusion, this study strives to explore the remarketing strategies of virtual reality (VR) retargeting campaigns in accordance with telepresence theory for the tourism industry. The practical findings of the present study can serve as a reference for digital marketers in setting the optimal advertising strategies to elicit the desire to purchase from prospective customers

    Recombinant hemagglutinin proteins formulated in a novel PELC/CpG adjuvant for H7N9 subunit vaccine development

    Get PDF
    Humans infected with H7N9 avian influenza viruses can result in severe pneumonia and acute respiratory syndrome with an approximately 40% mortality rate, and there is an urgent need to develop an effective vaccine to reduce its pandemic potential. In this study, we used a novel PELC/CpG adjuvant for recombinant H7HA (rH7HA) subunit vaccine development. After immunizing BALB/c mice intramuscularly, rH7HA proteins formulated in this adjuvant instead of an alum adjuvant elicited higher IgG, hemagglutination-inhibition, and virus neutralizing antibodies in sera; induced higher numbers of H7HA-specific IFN-γ-secreting T cells and antibody secreting cells in spleen; and provided improved protection against live virus challenges. Our results indicate that rH7HA proteins formulated in PELC/CpG adjuvant can induce potent anti-H7N9 immunity that may provide useful information for H7N9 subunit vaccine development

    Outcomes of patients with rodenticide poisoning at a far east poison center

    Get PDF
    BACKGROUND: Rodenticide poisoning remains a major public health problem in Asian countries. Nevertheless, very few data are available in world literature regarding the outcomes of these patients. Therefore, the purpose of this study was to investigate the clinical outcomes of rodenticide poisonings in our hospital and to compare these data with published reports from other international poison centers. FINDINGS: We retrospectively examined the records of 20 patients with rodenticide poisoning (8 brodifacoum, 12 bromadiolone) who were referred to Chang Gung Memorial Hospital between 2000 and 2011. It was found that most of the rodenticide patients were middle-aged adults. Both genders were equally affected and many patients had a past history of major depressive disorder or schizophrenia. Nevertheless, patients with bromadiolone were referred significantly sooner than patients with brodifacoum poisoning (0.1 ± 0.1 versus 5.5 ± 10.5, P < 0.001). Furthermore, it was found that patients with brodifacoum suffered higher incidences of ecchymosis (50.0% versus 0%, P = 0.006) and hematuria (50.0% versus 0%, P = 0.006) than patients with bromadiolone poisoning. Laboratory analysis also demonstrated a poorer hemostatic profile of patients with brodifacoum [prothrombin time (PT), international normalized ratio (INR), 4.3 ± 4.8 versus 1.0 ± 0.1, P = 0.032; PT prolongation, 50.0% versus 0%, P = 0.006; activated partial thromboplastin time (aPTT) prolongation, 50.0% versus 0%, P = 0.006] than patients with bromadiolone poisoning. At the end of analysis, no patient died of the poisoning. CONCLUSION: The favorable outcome (zero mortality rate) is comparable to the published reports from other international poison centers. Further studies are warranted

    Enhanced plasmonic biosensor utilizing paired antibody and label-free Fe3O4 nanoparticles for highly sensitive and selective detection of Parkinson’s α-synuclein in serum

    Get PDF
    Parkinson’s disease (PD) is an acute and progressive neurodegenerative disorder, and diagnosis of the disease at its earliest stage is of paramount importance to improve the life expectancy of patients. α-Synuclein (α-syn) is a potential biomarker for the early diagnosis of PD, and there is a great need to develop a biosensing platform that precisely detects α-syn in human body fluids. Herein, we developed a surface plasmon resonance (SPR) biosensor based on the label-free iron oxide nanoparticles (Fe3O4 NPs) and paired antibody for the highly sensitive and selective detection of α-syn in serum samples. The sensitivity of the SPR platform is enhanced significantly by directly depositing Fe3O4 NPs on the Au surface at a high density to increase the decay length of the evanescent field on the Au film. Moreover, the utilization of rabbit-type monoclonal antibody (α-syn-RmAb) immobilized on Au films allows the SPR platform to have a high affinity-selectivity binding performance compared to mouse-type monoclonal antibodies as a common bioreceptor for capturing α-syn molecules. As a result, the current platform has a detection limit of 5.6 fg/mL, which is 20,000-fold lower than that of commercial ELISA. The improved sensor chip can also be easily regenerated to repeat the α-syn measurement with the same sensitivity. Furthermore, the SPR sensor was applied to the direct analysis of α-syn in serum samples. By using a format of paired α-syn-RmAb, the SPR sensor provides a recovery rate in the range from 94.5% to 104.3% to detect the α-syn in diluted serum samples precisely. This work demonstrates a highly sensitive and selective quantification approach to detect α-syn in human biofluids and paves the way for the future development in the early diagnosis of PD

    Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation.

    Get PDF
    Cell encapsulation is an attractive transplantation strategy to treat endocrine disorders. Transplanted cells offer a dynamic and stimulus-responsive system that secretes therapeutics based on patient need. Despite significant advancements, a challenge in allogeneic cell encapsulation is maintaining sufficient oxygen and nutrient exchange, while providing protection from the host immune system. To this end, we developed a subcutaneously implantable dual-reservoir encapsulation system integrating in situ prevascularization and local immunosuppressant delivery, termed NICHE. NICHE structure is 3D-printed in biocompatible polyamide 2200 and comprises of independent cell and drug reservoirs separated by a nanoporous membrane for sustained local release of immunosuppressant. Here we present the development and characterization of NICHE, as well as efficacy validation for allogeneic cell transplantation in an immunocompetent rat model. We established biocompatibility and mechanical stability of NICHE. Further, NICHE vascularization was achieved with the aid of mesenchymal stem cells. Our study demonstrated sustained local elution of immunosuppressant (CTLA4Ig) into the cell reservoir protected transcutaneously-transplanted allogeneic Leydig cells from host immune destruction during a 31-day study, and reduced systemic drug exposure by 12-fold. In summary, NICHE is the first encapsulation platform achieving both in situ vascularization and immunosuppressant delivery, presenting a viable strategy for allogeneic cell transplantation

    4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The crude extract of the fruit bearing plant, <it>Physalis peruviana </it>(golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown.</p> <p>Methods</p> <p>Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug.</p> <p>Results</p> <p>It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (<it>p </it>< 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (<it>p </it>< 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC<sub>50</sub>) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G<sub>1 </sub>accumulation and slight arrest at the G<sub>2</sub>/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G<sub>2</sub>/M arrest for H1299 cells treated with 5 μg/mL for 24 h.</p> <p>Conclusions</p> <p>In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.</p

    Analysis of Epitopes on Dengue Virus Envelope Protein Recognized by Monoclonal Antibodies and Polyclonal Human Sera by a High Throughput Assay

    Get PDF
    Dengue virus is the leading cause of arboviral diseases worldwide. The envelope protein is the major target of neutralizing antibodies and vaccine development. While previous studies have reported several epitopes on envelope protein, the possibility of interdomain epitopes and the relationship of epitopes to neutralizing potency remain unexplored. We developed a high throughput dot blot assay by using 67 alanine mutants of surface-exposed envelope residues as a systematic approach to identify epitopes recognized by mouse monoclonal antibodies and polyclonal human sera. Our results suggested the presence of interdomain epitopes more frequent than previously appreciated. Compared with monoclonal antibodies generated by traditional protocol, the potent neutralizing monoclonal antibodies generated by a new protocol showed several unique features of their epitopes. Moreover, the predominant epitopes of antibodies against envelope protein in polyclonal sera can be identified by this assay. These findings have implications for future development of epitope-specific diagnostics and epitope-based dengue vaccine, and add to our understanding of humoral immune responses to dengue virus at the epitope level

    The Use of Nanoscale Visible Light-Responsive Photocatalyst TiO2-Pt for the Elimination of Soil-Borne Pathogens

    Get PDF
    Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
    corecore